www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 13.06.2007
Autor: CPH

Aufgabe
Ist die Funktion f : [mm] R^2 \to [/mm] R mit f(0, 0) = 0 und
f(x, y) [mm] =\bruch{x^3}{ \wurzel{x^2 + y^2}} [/mm]
für (x, y) [mm] \not= [/mm] (0, 0)
im Nullpunkt differenzierbar?

Hallo, ich habe offensichtlich das kapitel differnzierbarkeit mit mehreren veränderlichen nicht kapiert.

Was genau muss man zeigen, wir können dies ruhig an diesm Beispiel klären.

Ich hoffe ich verstehe das.

MfG

CPH




        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 13.06.2007
Autor: max3000

Hallo.

Deine Funktion bildet den [mm] \IR^{2} [/mm] nach [mm] \IR [/mm] ab.
Da er nur in den [mm] \IR [/mm] abbildet ist die Ableitung f'(x,y)=grad(f(x,y))

Also ist f differenzierbar, wenn f partiell differenzierbar ist und das ist der fall, wenn f in alle Koordinatenrichtungen differenzierbar ist.

Wenn dann [mm] (x,y)\to(0,0), [/mm] muss auch [mm] f(x,y)\to0 [/mm] erfüllt sein.

Und nur dann ist es im Nullpunkt differenzierbar.
Das ist eigentlich alles, was du zu zeigen hast.

Ich hoffe das hilft dir erst mal weiter.

Gruß
Max

Bezug
                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mi 13.06.2007
Autor: Somebody


> Hallo.
>  
> Deine Funktion bildet den [mm]\IR^{2}[/mm] nach [mm]\IR[/mm] ab.
>  Da er nur in den [mm]\IR[/mm] abbildet ist die Ableitung
> f'(x,y)=grad(f(x,y))
>  
> Also ist f differenzierbar, wenn f partiell differenzierbar
> ist und das ist der fall, wenn f in alle
> Koordinatenrichtungen differenzierbar ist.

Nein, das genügt nicht. Die partiellen Ableitungen müssen zudem stetig sein.

Nebenbei bemerkt: diese Frage wurde neulich in diesem Forum bereits diskutiert, siehe https://www.vorhilfe.de/read?i=272142


Bezug
                        
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Mi 13.06.2007
Autor: max3000

Das hab ich ja mit dieser Grenzwertbetrachtung auch gemacht.
Das heißt ja, dass die Funktion in (0,0) stetig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]