Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:14 Mo 31.01.2005 | Autor: | KingMob |
Hi !
Kann mir bitte jemand bei diesem Beweis hier behilflich sein :
"Sei f : ]a,b[ [mm] \to \IR [/mm] in xo [mm] \in [/mm] ]a,b[ differenzierbar. Man zeige, dass es eine Konstante K [mm] \in {\IR}_{+} [/mm] und ein [mm] \delta [/mm] > 0 gibt, so dass für alle x [mm] \in [/mm] ]a,b[ [mm] \cap [/mm] ] xo - [mm] \delta [/mm] , xo + [mm] \delta [/mm] [ stets | f(x) - f(xo) | < K * | x - xo | gilt."
Bin für jeden Ansatz dankbar!
|
|
|
|
Guten Morgen!
Zunächst mal soll es mit Sicherheit folgendermaßen aussehen:
$|f(x) - [mm] f(x_0)| \leq [/mm] K [mm] \cdot [/mm] |x - [mm] x_0|$
[/mm]
Denn "echt kleiner" kann man für $x = [mm] x_0$ [/mm] schlecht zeigen, da sind beide Seiten gleich 0.
Zur eigentlichen Aufgabe: was bedeutet Differenzierbarkeit im Punkt [mm] $x_0$ [/mm] anschaulich? Das heißt doch, dass für jede Folge [mm] $(x_n)_{n \in \IN}$ [/mm] aus $]a,b[$ mit [mm] $\lim_{n \to \infty} x_n [/mm] = [mm] x_0$ [/mm] gilt:
[mm] $\lim_{n \to \infty} \frac{f(x) - f(x_0)}{x - x_0}$ [/mm] existiert und ist unabhängig von der Wahl der Folge.
Der Grenzwert wird dann [mm] $f'(x_0)$, [/mm] der Wert der Ableitung im Punkt [mm] $x_0$ [/mm] getauft.
Wenn Du jetzt diesen Quotienten umformst bist Du schon fast bei der Form wie im Beweis. Das einzige Problem ist noch, dass Du keine Kontrolle darüber hast, wie die Folgen aussehen, also fällt es schwer, ein [mm] $\delta$ [/mm] zu wählen, das für alle Folgen zugleich gilt.
Hier hilft aber ein simpler Trick: beweise die Aussage mit Widerspruch! Nimm an, dass die Aussage nicht gilt, dann findest Du für jedes [mm] $\delta$ [/mm] in dem angegebenen Intervall einen Wert $y$, für den die Ungleichung nicht gilt. Für fallendes [mm] $\delta$ [/mm] kannst Du so eine Folge konstruieren, die gegen [mm] $x_0$ [/mm] läuft, aber für die der Differenzenquotient nicht die gewünschten Eigenschaften hat...
Viel Erfolg!
Lars
|
|
|
|