www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:38 Mi 25.06.2008
Autor: domenigge135

Hallo zusammen. Ich habe mal eine wichtige Frage.

Gegeben sei die Funktion f: [mm] \IR \to \IR, [/mm] x [mm] \to \begin{cases} 0, & \mbox{} x\le 0 \mbox{} \\ exp(\bruch{-1}{x}), & \mbox{} x>0 \mbox{} \end{cases} [/mm]
Zeigen Sie das f auf ganz [mm] \IRdifferenzierbar [/mm] ist und geben Sie die Ableitung ab.

Also gut. Da ja Stetigkeit notwendig für differenzierbarkeit ist, würde ich hier als allererstes ansetzen. Da es sich um 0, x [mm] \le [/mm] 0 um eine stetige Ergänzung handelt, reicht es, [mm] exp(\bruch{-1}{x}), [/mm] x>0 auf stetigkeit zu überprüfen. Das heißt ich benötige hier, [mm] \limes_{x\rightarrow\ 0}exp(\bruch{-1}{x}) [/mm] (das soll der rechtsseitige Grenzwert sein) und der Grenzwert dieser Funktion ist 0 (wie könnte ich das aber konkret beweisen???) Von daher wäre die Funktion an der Stelle 0 und somit auf ganz [mm] \IR [/mm] differenzierbar.

Zu der ABleitung komme ich im nächsten Thread. MFG domenigge135

        
Bezug
Differenzierbarkeit: Anschauung
Status: (Antwort) fertig Status 
Datum: 07:44 Mi 25.06.2008
Autor: Loddar

Hallo domenigge!


Wohin strebt denn [mm] $-\bruch{1}{x}$ [/mm] für [mm] $x\rightarrow 0\downarrow$ [/mm] ?

Und wohin strebt [mm] $e^z$ [/mm] für [mm] $z\rightarrow-\infty$ [/mm] ?


Gruß
Loddar


Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:50 Mi 25.06.2008
Autor: domenigge135

Ja so ging mir das auch gerade durch den kopf [mm] \limes_{x\rightarrow\ 0}\bruch{-1}{x}=-\infty [/mm] und [mm] \limes_{x\rightarrow\ 0}exp(-\infty)=0 [/mm] Wenn man das so schreiben kann. Ansonsten nehme ich deine Schreibweise. Für die ABleitung verwende ich die Kettenregel. Die bringt mich dann auf [mm] \bruch{exp(\bruch{-1}{x})}{x^2} [/mm]

MFG domenigge135

Bezug
                        
Bezug
Differenzierbarkeit: Lsg
Status: (Antwort) fertig Status 
Datum: 08:05 Mi 25.06.2008
Autor: ron

Hallo,

es ist die Berechnung nicht vollständig, wenn auch i.O.

Die Ableitung soll für die GESAMTE Funktion angegeben werden. Wie war gleich der Definitionsbereich? f(x)=0 ergibt f'(x)=0 ist immer wieder ein Polynome vom Grad Null.

Hinweis: Bei einigen Funktionen ist die Umwandlung der Brüche in Potenzen leichter zu handhaben:

[mm] exp(\bruch{-1}{x}) [/mm] = [mm] exp(-x^{-1}) [/mm]

Somit die Ableitung nach Kettenregel: exp(- [mm] x^{-1} [/mm] ) * [mm] -(-1)x^{-2} [/mm]

Entspricht nach Umschreibung wieder der angegeben Lösung, allerdings nur für x>0!

Gruß
Ron

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]