www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Do 05.05.2011
Autor: Theoretix

Aufgabe
Sei [mm] g:[0,\infty]\to\IR. [/mm] Die Funktion [mm] f:\IR^m\to\IR [/mm] sei definiert durch

[mm] f(x)=g(\vert x\vert) [/mm] für [mm] x\in\IR^m [/mm]

a) Zeigen Sie, dass f genau dann im [mm] \IR^m [/mm] differenzierbar ist, wenn g in [mm] (0,\infty) [/mm] differenzierbar ist und in 0 die rechtsseitige Ableitung g’(0+)=0 hat.

Hallo,

hier liegt ja eine zu zeigende Äquivalenz vor, also gibt es zwei Richtungen zu zeigen.
Ich versuche mal mit der [mm] „\Rightarrow“ [/mm] anzufangen:

Die Voraussetzung ist also, dass [mm] f(x)=g(\vert x\vert) [/mm] differenzierbar ist und es ist daraus zu folgern, dass dann g in [mm] (0,\infty) [/mm] differenzierbar ist und in 0 die rechtsseitige Ableitung g’(0+)=0 besitzt.

Ansetzen würde ich zunächst mit der Definition der Differenzierbarkeit: f ist differenzierbar, wenn es eine Matrix A [mm] \in\IR{m \times n}gibt, [/mm] sodass man für x nahe [mm] x_0 [/mm] die Funktion f approximieren kann durch:

[mm] f(x)=f(x_0)+A(x-x_0)+R(x,x_0) [/mm]

jetzt kann ich doch die Funktion explizit einsetzen:

[mm] \Rightarrow g(\vert x\vert)=g(\vert x_0\vert)+A(x-x_0)+R(x,x_0) [/mm]

Aber die Jacobi Matrix ist ja noch diejenige, welche die Ableitung von f beschreibt, oder? D.h. eig. bin ich damit noch nicht so richtig weiter gekommen.

Ist das überhaupt ein brauchbarer Ansatz so und wenn ja, wie muss ich weiter machen?

Wäre dankbar für Hilfe!

Gruß

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Fr 06.05.2011
Autor: leduart

Hallo
was ist denn etwa die ableitung [mm] f_{x_i}((x) [/mm]
die kannst du doch nach kettenregel berechnen?
wenn dus nicht kannst nimm etwa als Beispiel [mm] g(x)=x^4 [/mm] oder [mm] x^3 [/mm]
das erfüllt die Bedingungen, dann verallgemeinern.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]