www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Fr 16.09.2011
Autor: mathestudent111

Aufgabe
f(x,y) = [mm] \wurzel{|xy|} [/mm]

Zeigen Sie: f ist in (0,0) nicht differenzierbar.

Hallo Leute,

ich sitze gerade vor einem Problem.

Ich soll zeigen, dass f nicht differenzierbar in (0,0) sei.
Der Übungsleiter meinte, wir sollen mit der Restfunktion arbeiten.

R(x,y) = f(x,y) - f(0,0) - [0 0] * [mm] \vmat{ x-0 \\ y-0 } [/mm] = f(x,y)

Dann:

[mm] \limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||} [/mm] = [mm] \limes_{((x,y)\rightarrow\ 0)} \wurzel{\bruch{|xy|}{(x^2+y^2)}} [/mm]

Dann abschätzen:
[mm] \wurzel{\bruch{|xy|}{(x^2+y^2)}} [/mm] < [mm] \wurzel{|xy|} [/mm]

Und:
[mm] \limes_{((x,y)\rightarrow\ 0)} \wurzel{|xy|} [/mm] = 0

Somit ist doch die Voraussetzung für die Differenzierbarkeit gegeben.
Oder irre ich mich da?

Schonmal danke für die Antworten.

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Fr 16.09.2011
Autor: Al-Chwarizmi


> f(x,y) = [mm]\wurzel{|xy|}[/mm]
>  
> Zeigen Sie: f ist in (0,0) nicht differenzierbar.
>  Hallo Leute,
>  
> ich sitze gerade vor einem Problem.
>  
> Ich soll zeigen, dass f nicht differenzierbar in (0,0)
> sei.
>  Der Übungsleiter meinte, wir sollen mit der Restfunktion
> arbeiten.


Mal ganz abgesehen von diesem Ratschlag:

es würde doch genügen, zu zeigen, dass die Restriktion
von f auf eine durch (0,0) gehende Gerade, also beispiels-
weise die Gerade mit y=x , im Nullpunkt nicht differenzierbar
ist.

LG    Al-Chw.

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Sa 17.09.2011
Autor: mathestudent111

Aber ich will doch mit der Restfunktion machen...

Oder ist das nicht machbar?

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 17.09.2011
Autor: fred97

Du hast

       [mm] $R(x,y)=\wurzel{\bruch{|xy|}{(x^2+y^2)}}$ [/mm]

Setze mal x=y. Geht R(x,x) gegen 0 für x [mm] \to [/mm] 0 ?

FRED

Bezug
        
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 Sa 17.09.2011
Autor: hippias


> Dann abschätzen:
>  [mm]\wurzel{\bruch{|xy|}{(x^2+y^2)}}[/mm] < [mm]\wurzel{|xy|}[/mm]
>  

Das Problem der Deiner Ueberlegung ist, dass diese Abschaetzung nicht richtig ist fuer [mm] $x^2+y^2<1$ [/mm] und das ist genau der Fall, der uns hier interessiert. Auch ich wuerde nicht so gerne mit der Restfunktion machen - klingt irgendwie unanstaendig - sondern eher auch eine bestimmte Gerade betrachten.

Bezug
        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Sa 17.09.2011
Autor: kamaleonti

Moin,
> f(x,y) = [mm]\wurzel{|xy|}[/mm]
>  
> Zeigen Sie: f ist in (0,0) nicht differenzierbar.
>  Hallo Leute,
>  
> ich sitze gerade vor einem Problem.
>  
> Ich soll zeigen, dass f nicht differenzierbar in (0,0) sei.
>  Der Übungsleiter meinte, wir sollen mit der Restfunktion
> arbeiten.
>  
> R(x,y) = f(x,y) - f(0,0) - [0 0] * [mm]\vmat{ x-0 \\ y-0 }[/mm] = f(x,y)
>  
> Dann:
>  
> [mm]\limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||}[/mm] = [mm]\limes_{((x,y)\rightarrow\ 0)} \wurzel{\bruch{|xy|}{(x^2+y^2)}}[/mm]
>  

Um zu zeigen, dass dieser Grenzwert nicht existiert, kannst du auch Folgen in [mm] \IR^2 [/mm] wählen, die gegen (0,0) konvergieren, aber unterschiedliche Grenzwerte liefern.

Beispiel: [mm] a_n=(0,1/n), [/mm] dann [mm] \frac{R(a_n)}{\parallel a_n\parallel}=\wurzel{\bruch{|0*1/n|}{(0^2+(1/n)^2)}}=0\to0,n\to\infty. [/mm]

Und nun noch eine weitere Folge mit anderem Ergebnis. Zum Beispiel [mm] b_n=(1/n,1/n). [/mm] Das liefert [...]


LG

Bezug
                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Sa 17.09.2011
Autor: fred97


> Moin,
>  > f(x,y) = [mm]\wurzel{|xy|}[/mm]

>  >  
> > Zeigen Sie: f ist in (0,0) nicht differenzierbar.
>  >  Hallo Leute,
>  >  
> > ich sitze gerade vor einem Problem.
>  >  
> > Ich soll zeigen, dass f nicht differenzierbar in (0,0)
> sei.
>  >  Der Übungsleiter meinte, wir sollen mit der
> Restfunktion
> > arbeiten.
>  >  
> > R(x,y) = f(x,y) - f(0,0) - [0 0] * [mm]\vmat{ x-0 \\ y-0 }[/mm] =
> f(x,y)
>  >  
> > Dann:
>  >  
> > [mm]\limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||}[/mm] =
> [mm]\limes_{((x,y)\rightarrow\ 0)} \wurzel{\bruch{|xy|}{(x^2+y^2)}}[/mm]
>  
> >  

> Um zu zeigen, dass dieser Grenzwert nicht existiert, kannst
> du auch Folgen in [mm]\IR^2[/mm] wählen, die gegen (0,0)
> konvergieren, aber unterschiedliche Grenzwerte liefern.
>  
> Beispiel: [mm]a_n=(0,1/n),[/mm] dann [mm]\frac{R(a_n)}{\parallel a_n\parallel}=\wurzel{\bruch{|0*1/n|}{(0^2+(1/n)^2)}}=0\to0,n\to\infty.[/mm]
>  
> Und nun noch eine weitere Folge mit anderem Ergebnis. Zum
> Beispiel [mm]b_n=(1/n,1/n).[/mm] Das liefert [...]
>  
>
> LG


  Um zu zeigen, dass f in (0,0) nicht differenzierbar ist, ist zu zeigen, dass


               $ [mm] \limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||} \ne [/mm] 0  $

ist (oder der Grenzwert nicht existiert).

Wie man das machen kann habe ich hier



             https://matheraum.de/read?i=820475

erwähnt.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]