www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationDifferenzieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Differenzieren
Differenzieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 So 30.12.2012
Autor: zitrone

Hallo!

Hab da eine kleine Frage bei der Aufleitung von [mm] \integral_{}^{}{sin(2x)dx} [/mm] und bitte daher um Hilfe!

Ich kann mir schon denken, welches Integral dazugehört, aber ich soll es anhand der Substitution machen..

Daher dachte ich mir zunächst z= 2x zu setzen. Die Ableitung dazu wäre:
[mm] \bruch{dz}{dx} [/mm] = 2

Dann würde ich folgendes tun:

sin(z)
=> -cos(z)

Aber wie fahre ich weiter fort, um am Ende das Ergebnis -0,5cos(2x) zu bekommen?
Steh grad auf dem Schlauch...

LG zitrone

        
Bezug
Differenzieren: umformen + einsetzen
Status: (Antwort) fertig Status 
Datum: 16:27 So 30.12.2012
Autor: Loddar

Hallo zitrone!


> Hab da eine kleine Frage bei der Aufleitung von
> [mm]\integral_{}^{}{sin(2x)dx}[/mm] und bitte daher um Hilfe!

[eek] Bitte nicht "Aufleitung" ...

Und diese Formulierung würde gar heißen, dass man zweimal integrieren muss.


> Ich kann mir schon denken, welches Integral dazugehört,
> aber ich soll es anhand der Substitution machen..
>  
> Daher dachte ich mir zunächst z= 2x zu setzen. Die
> Ableitung dazu wäre:
>  [mm]\bruch{dz}{dx}[/mm] = 2

[ok] Forme hier nach $dx \ = \ ...$ um und setze in das Integral ein.


Gruß
Loddar


PS: Was hat diese Aufgabe mit Differenzieren zu tun?



Bezug
                
Bezug
Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 So 30.12.2012
Autor: zitrone


> Hallo zitrone!

Hallo Loddar,

erstmal Danke für die Antwort!:)

> > Hab da eine kleine Frage bei der Aufleitung von
> > [mm]\integral_{}^{}{sin(2x)dx}[/mm] und bitte daher um Hilfe!
>  
> [eek] Bitte nicht "Aufleitung" ...
>  
> Und diese Formulierung würde gar heißen, dass man zweimal
> integrieren muss.


Merk ich auch gerade....-.- [ohwell]

> > Ich kann mir schon denken, welches Integral dazugehört,
> > aber ich soll es anhand der Substitution machen..
>  >  
> > Daher dachte ich mir zunächst z= 2x zu setzen. Die
> > Ableitung dazu wäre:
>  >  [mm]\bruch{dz}{dx}[/mm] = 2
>  
> [ok] Forme hier nach [mm]dx \ = \ ...[/mm] um und setze in das
> Integral ein.
>  
>

Also so?:

z=2x
[mm] \bruch{dz}{dx}= [/mm] 2
[mm] \bruch{dz}{2}= [/mm] dx

[mm] \integral_{}^{}sin(2x) [/mm]

=> sin(z)
=> -1/zcos(z)


> Gruß
>  Loddar
>  
>
> PS: Was hat diese Aufgabe mit Differenzieren zu tun?
>  

nichts...sorry [pfeif]

LG zitrone

Bezug
                        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Mo 31.12.2012
Autor: Marcel

Hallo,

> > Hallo zitrone!
>   Hallo Loddar,
>  
> erstmal Danke für die Antwort!:)
>  
> > > Hab da eine kleine Frage bei der Aufleitung von
> > > [mm]\integral_{}^{}{sin(2x)dx}[/mm] und bitte daher um Hilfe!
>  >  
> > [eek] Bitte nicht "Aufleitung" ...
>  >  
> > Und diese Formulierung würde gar heißen, dass man zweimal
> > integrieren muss.
>  
>
> Merk ich auch gerade....-.- [ohwell]
>  
> > > Ich kann mir schon denken, welches Integral dazugehört,
> > > aber ich soll es anhand der Substitution machen..
>  >  >  
> > > Daher dachte ich mir zunächst z= 2x zu setzen. Die
> > > Ableitung dazu wäre:
>  >  >  [mm]\bruch{dz}{dx}[/mm] = 2
>  >  
> > [ok] Forme hier nach [mm]dx \ = \ ...[/mm] um und setze in das
> > Integral ein.
>  >  
> >
> Also so?:
>  
> z=2x
>  [mm]\bruch{dz}{dx}=[/mm] 2
>  [mm]\bruch{dz}{2}=[/mm] dx
>  
> [mm]\integral_{}^{}sin(2x)[/mm]
>  
> => sin(z)
>  => -1/zcos(z)

Menschenskind, rechnest Du auch so:
[mm] $$(x+2)^2=9$$ [/mm]
[mm] $$(x+2)^2$$ [/mm]
[mm] $$\Rightarrow 3^2$$ [/mm]
$$x+2$$
[mm] $$\Rightarrow [/mm] 3$$
$$x=1 [mm] \text{ oder }x=-5\,.$$ [/mm]
.
.
.

Wüßtest Du da noch, was diese "Fetzen" da eigentlich bedeuten und
warum da Folgerungen stehen, obwohl keine Aussagen dabei vorhanden
sind? Ich meine: Als Schmierzettel oder als Puzzelspiel macht das ganze
noch einen gewissen Sinn - aber ansonsten ist das nur für die Tonne,
wenn man nicht nur gerade das Ergebnis IRGENDWIE festgehalten haben
will bei solchen Rechnungen!

Benutze doch bitte die mathematischen Symbole richtig, und schreibe
Folgerungen, wo Folgerungen stehen sollen und Gleichheit, wo eine
Gleichheit hingehört.

Also:
Um
[mm] $$\int \sin(2x)dx$$ [/mm]
zu berechnen (d.h. um EINE Stammfunktion von $x [mm] \mapsto \sin(2x)$ [/mm]
anzugeben), hast Du [mm] $z=z(x)=2x\,$ [/mm] substituiert und erhältst damit
[mm] $dx=\frac{dz}{2}\,,$ [/mm] also folgt
[mm] $$\int \sin(2x)dx=\int \sin(z)\;\frac{dz}{2}=\frac{1}{2}\int \sin(z)\;dz=\;-\;\frac{1}{2}\cos(z)\,,$$ [/mm]

Jetzt kennen wir also eine Stammfunktion von $x [mm] \mapsto \sin(2x)\,$ [/mm] in
der Variablen [mm] $z\,$ [/mm] mit [mm] $z=2x\,$ [/mm] (genauer gesagt haben wir oben
nachgerechnet, dass mit [mm] $z:=2x\,$ [/mm] nun $x [mm] \mapsto \;-\;\frac{1}{2}\cos(z)$ [/mm] eine Stammfunktion von
$x [mm] \mapsto \sin(2x)$ [/mm] ist!), nur: wir wollen eine Stammfunktion ja nicht in
substituierten Variablen angeben, sondern in der Ausgangsvariablen.
Resubstitution ist also angesagt: Setze noch [mm] $z=2x\,$ [/mm] in [mm] $\int \sin(2x)\;dx=\;-\;\frac{1}{2}\cos(z)$ [/mm] ein!

Tipp zur Selbstkontrolle Deiner Rechnung: Leite die so berechnete
Funktion in der Variablen [mm] $x\,$ [/mm] gemäß der Kettenregel ab! (Beachte [mm] $\cos\,'=\;\red{-}\;\sin$!) [/mm]

P.S. Bei

>  => -1/zcos(z)

sollte das z wohl eine 2 sein. Aber formal kannst Du Deine
Rechnung echt verbrennen, auch, wenn man sieht, dass Du Dir das richtige
dabei denkst. Lerne DRINGEND, falls Du das noch nicht kannst, es auch
richtig aufzuschreiben!

Gruß,
  Marcel

Bezug
        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:57 Mo 31.12.2012
Autor: Marcel

Hallo,

> Hallo!
>  
> Hab da eine kleine Frage bei der Aufleitung von
> [mm]\integral_{}^{}{sin(2x)dx}[/mm] und bitte daher um Hilfe!
>  
> Ich kann mir schon denken, welches Integral dazugehört,
> aber ich soll es anhand der Substitution machen..
>  
> Daher dachte ich mir zunächst z= 2x zu setzen. Die
> Ableitung dazu wäre:
>  [mm]\bruch{dz}{dx}[/mm] = 2
>  
> Dann würde ich folgendes tun:
>  
> sin(z)
>  => -cos(z)

auch hier: Das, was Du da 'beschreibst' mit [mm] $\sin(z) \Rightarrow -\cos(z)\,,$ [/mm]
ist richtig zu schreiben als
[mm] $$\int \sin(z)\;dz=\;-\;\cos(z)\,.$$ [/mm]
(Jetzt darf der ein oder andere noch meckern und [mm] "$+c\,$ [/mm] mit einer
Konstanten [mm] $c\,$" [/mm] dabei rechterhand ergänzen - ich lasse es weg, weil die
Funktion rechterhand für mich eh alle anderen Stammfunktionen von $z [mm] \mapsto \sin(z)$ [/mm]
als Funktion [mm] $\IR \to \IR$ [/mm] repräsentiert!)

Oder man schreibt einen 'einigermaßen' vernünftigen Satz: "Eine
Stammfunktion der Funktion $z [mm] \mapsto \sin(z)$ [/mm] ist durch $z [mm] \mapsto \;-\;\cos(z)$ [/mm]
gegeben."
oder
"Für [mm] $\sin(z)$ [/mm] ist [mm] $\;-\;\cos(z)$ [/mm] eine Stammfunktion..."
oder ähnliches. Das ist zwar auch alles nicht ganz(!) präzise, aber es ist
wesentlich vernünftiger, also [mm] $\sin(z) \Rightarrow -\cos(z)$ [/mm] zu schreiben:
Du schreibst ja auch nicht $x+2 [mm] \Rightarrow [/mm] 4$...
(Was wäre das auch für eine Folgerung? Weder [mm] $x+2\,$ [/mm] ist eine Aussage,
noch ist [mm] $4\,$ [/mm] eine Aussage...)

Gruß,
  Marcel

Bezug
                
Bezug
Differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Fr 04.01.2013
Autor: zitrone

Hallo Marcel!

Vielen Dank für die ausführliche Erklärung!...Ja ich habe wirklich ein Problem damit die Sachen korrekt aufzuschreiben und ja ich wusste bis eben nicht so genau, wieso man es so schreibt..:/

Ich werd mich auf jeden Fall noch einmal damit beschäftigen!
Danke nomma!

LG zitrone


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]