www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDifferenzierung überprüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Differenzierung überprüfen
Differenzierung überprüfen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierung überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mo 16.05.2011
Autor: Sup

Aufgabe
Gegeben sind die vektorwertigen Funktionen [mm] \vec{a}(x) [/mm] und [mm] \vec{b}(x) [/mm] sowie die skalare Funktion f(x). Überprüfen sie, indem sie ausnutzen, dass Vektoren komponenten differenziert werden.
(i) [mm] \bruch{d}{dx}(\vec{a}(x)*\vec{b}(x)) [/mm] = [mm] \bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx} [/mm]
(ii) [mm] \bruch{d}{dx}(f(x)*\vec{a}(x)) [/mm] = [mm] \bruch{df}{dx}*\vec{a}+f(x)*\bruch{d\vec{a}}{dx} [/mm]
(iii) [mm] \bruch{d}{dx}(\vec{a}(x)x\vec{b}(x)) [/mm] = [mm] \bruch{d\vec{a}}{dx}x\vec{b}+\vec{a}x\bruch{d\vec{a}}{dx} [/mm]



Guten Abend liebe Mathe Community :)

Ich habe ein paar Fragen

1. "Überprüfen" heißt ja ich muss es nur nachrechnen, aber nicht beweisen oder?

2. Es wird in alle 3 Fällen [(i)-(iii)] ja einfach die Produktregel angewandt, was man ja auch auf einem Blick sofort sieht. Versteh nicht ganz, was es da noch zu überprüfen gilt?!

3. Dazu dann auch gleich die (vorerst) letzte Frage:
Sieht so die Ableitung einer Vektorwertigen Funktion aus:
[mm] \vec{a}'=\vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) } [/mm]

Ih versuch mich gleich mal an (i) wobei ich das ganze wegen "2." noch relativ nutzlos finde:

[mm] \bruch{d}{dx}(\vec{a}(x)*\vec{b}(x)) [/mm] = [mm] \bruch{d}{dx} [a_{1}(x)*b_{1}(x) [/mm] + [mm] a_{2}(x)*b_{2}(x) [/mm] +  ... + [mm] a_{n}(x)*b_{n}(x)] [/mm]
Jetzt muss ich in der Klammer ja auch die Produktregel anwenden?!

[mm] =[a_{1}'(x)*b_{1}(x) +a_{1}(x)*b_{1}'(x)]+ [a_{2}'(x)*b_{2}(x)+a_{2}(x)*b_{2}'(x)]+ [/mm]  ... + [mm] [a_{n}'(x)*b_{n}(x)+a_{n}(x)*b_{n}'(x)] [/mm]

So nun die andere Seite
[mm] \bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx}= [/mm]
[mm] \vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) }*\vec{b}+\vec{a}*\vektor{b_{1}'(x) \\ b_{2}'(x) \\ ... \\ b_{n}'(x) } [/mm]

So das jetzt ausmultipliziert und zusammengefasst ergibt das Obere.

(Hoffe ich hab mich vor lauter Zeichen jetzt nicht vertand)

Edit:
Bei (ii)
Was ist denn [mm] f(x)*\vec{a}(x)? [/mm]
Ist das das Gleiche wie bei (i) nur diesmal mit Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?

        
Bezug
Differenzierung überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Di 17.05.2011
Autor: MathePower

Hallo Sup,

> Gegeben sind die vektorwertigen Funktionen [mm]\vec{a}(x)[/mm] und
> [mm]\vec{b}(x)[/mm] sowie die skalare Funktion f(x). Überprüfen
> sie, indem sie ausnutzen, dass Vektoren komponenten
> differenziert werden.
>  (i) [mm]\bruch{d}{dx}(\vec{a}(x)*\vec{b}(x))[/mm] =
> [mm]\bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx}[/mm]
>  (ii) [mm]\bruch{d}{dx}(f(x)*\vec{a}(x))[/mm] =
> [mm]\bruch{df}{dx}*\vec{a}+f(x)*\bruch{d\vec{a}}{dx}[/mm]
>  (iii) [mm]\bruch{d}{dx}(\vec{a}(x)x\vec{b}(x))[/mm] =
> [mm]\bruch{d\vec{a}}{dx}x\vec{b}+\vec{a}x\bruch{d\vec{a}}{dx}[/mm]
>  
>
> Guten Abend liebe Mathe Community :)
>  
> Ich habe ein paar Fragen
>  
> 1. "Überprüfen" heißt ja ich muss es nur nachrechnen,
> aber nicht beweisen oder?


Ja.


>  
> 2. Es wird in alle 3 Fällen [(i)-(iii)] ja einfach die
> Produktregel angewandt, was man ja auch auf einem Blick
> sofort sieht. Versteh nicht ganz, was es da noch zu
> überprüfen gilt?!


Die Gültigkeit der genannten Rechenregeln.


>  
> 3. Dazu dann auch gleich die (vorerst) letzte Frage:
>  Sieht so die Ableitung einer Vektorwertigen Funktion aus:
> [mm]\vec{a}'=\vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) }[/mm]


Ja.


>  
> Ih versuch mich gleich mal an (i) wobei ich das ganze wegen
> "2." noch relativ nutzlos finde:
>
> [mm]\bruch{d}{dx}(\vec{a}(x)*\vec{b}(x))[/mm] = [mm]\bruch{d}{dx} [a_{1}(x)*b_{1}(x)[/mm]
> + [mm]a_{2}(x)*b_{2}(x)[/mm] +  ... + [mm]a_{n}(x)*b_{n}(x)][/mm]
>  Jetzt muss ich in der Klammer ja auch die Produktregel
> anwenden?!


Ja


>  
> [mm]=[a_{1}'(x)*b_{1}(x) +a_{1}(x)*b_{1}'(x)]+ [a_{2}'(x)*b_{2}(x)+a_{2}(x)*b_{2}'(x)]+[/mm]
>  ... + [mm][a_{n}'(x)*b_{n}(x)+a_{n}(x)*b_{n}'(x)][/mm]
>  
> So nun die andere Seite
>  
> [mm]\bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx}=[/mm]
>  [mm]\vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) }*\vec{b}+\vec{a}*\vektor{b_{1}'(x) \\ b_{2}'(x) \\ ... \\ b_{n}'(x) }[/mm]
>  
> So das jetzt ausmultipliziert und zusammengefasst ergibt
> das Obere.


Ersetze [mm]\vec{a}=\vektor{a_{1}(x) \\ a_{2}(x) \\ ... \\ a_{n}(x) }[/mm] und [mm]\vec{b}=\vektor{b_{1}(x) \\ b_{2}(x) \\ ... \\ b_{n}(x) }[/mm]


>  
> (Hoffe ich hab mich vor lauter Zeichen jetzt nicht
> vertand)
>  
> Edit:
>  Bei (ii)
>  Was ist denn [mm]f(x)*\vec{a}(x)?[/mm]
> Ist das das Gleiche wie bei (i) nur diesmal mit
> Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?


Nein, das ist nicht das "Gleiche".


Gruss
MathePower

Bezug
                
Bezug
Differenzierung überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Di 17.05.2011
Autor: Sup


> > Edit:
>  >  Bei (ii)
>  >  Was ist denn [mm]f(x)*\vec{a}(x)?[/mm]
> > Ist das das Gleiche wie bei (i) nur diesmal mit
> > Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?
>
>
> Nein, das ist nicht das "Gleiche".

Ja klar exakt das Gleich ist es nicht, aber es ist doch das gleiche Rechenprinzip/Rechenstruktur wie bei (i), nur, dass man man Ende einen Vektor sehen hat.
Nur ist jetzt [mm] f(x)\vec{a}= \vektor{f(x)a_{1}(x) \\ f(x)a_{2}(x) \\ ... \\ f(x)a_{n}(x) } [/mm]
Oder was ergibt das sonst?

Bezug
                        
Bezug
Differenzierung überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Di 17.05.2011
Autor: schachuzipus

Hallo Sup,


> > > Edit:
>  >  >  Bei (ii)
>  >  >  Was ist denn [mm]f(x)*\vec{a}(x)?[/mm]
> > > Ist das das Gleiche wie bei (i) nur diesmal mit
> > > Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?
> >
> >
> > Nein, das ist nicht das "Gleiche".
>   Ja klar exakt das Gleich ist es nicht, aber es ist doch
> das gleiche Rechenprinzip/Rechenstruktur wie bei (i), nur,
> dass man man Ende einen Vektor sehen hat.
>  Nur ist jetzt [mm]f(x)\vec{a}= \vektor{f(x)a_{1}(x) \\ f(x)a_{2}(x) \\ ... \\ f(x)a_{n}(x) }[/mm] [ok]
>  
> Oder was ergibt das sonst?

Ja, so stimmt's, $f$ ist ja als skalare Funktion vorausgesetzt.

Nun ableiten ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]