Dimension Abb(V,W) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:55 Mo 05.06.2006 | Autor: | maybe. |
Hallo erstmal...
Wie kann man sich denn die Dimension von Abb(V,W) vorstellen ? Wir haben gelernt, dass Abb(V,W) ein K-Vektorraum ist, falls V und W K-Vektoraeume darstellen. Und jeder Vektorraum besitzt doch eine Basis. Nun ist die Dimension ja die Anzahl der Elemente der Basis eines Vektorraums, aber ich habe keine Vorstellung wie eine Basis von Abb(V,W) aussehen wuerde, da die Vektoren ja Abbildungen sind. Über einen kleinen Anstoss würde ich mich echt freuen.
Danke im vorraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:15 Mo 05.06.2006 | Autor: | felixf |
Hallo!
> Wie kann man sich denn die Dimension von Abb(V,W)
> vorstellen ? Wir haben gelernt, dass Abb(V,W) ein
> K-Vektorraum ist, falls V und W K-Vektoraeume darstellen.
> Und jeder Vektorraum besitzt doch eine Basis. Nun ist die
> Dimension ja die Anzahl der Elemente der Basis eines
> Vektorraums, aber ich habe keine Vorstellung wie eine Basis
> von Abb(V,W) aussehen wuerde, da die Vektoren ja
> Abbildungen sind. Über einen kleinen Anstoss würde ich mich
> echt freuen.
Wenn $V$ und $W$ endlichdimensional sind, etwa [mm] $\dim_K [/mm] V = n$ und [mm] $\dim_K [/mm] W = m$, und wenn du zwei Basen [mm] $(v_1, \dots, v_n)$ [/mm] und [mm] $(w_1, \dots, w_m)$ [/mm] von $V$ bzw. $W$ gewaehlt hast, dann liefert die Abbildung [mm] $K^{m \times n} \to [/mm] Abb(V, W)$, [mm] $(a_{ij})_{ij} \mapsto \begin{cases} K^n \to K^m \\ v_i \mapsto \sum_{j=1}^m a_{ij} w_j \end{cases}$ [/mm] einen Isomorphismus (die Umkehrabbildung ist durch die Darstellungsmatrix von $f [mm] \in [/mm] Abb(V, W)$ bzgl. der obigen Basen gegeben).
Fuer [mm] $K^{m \times n}$ [/mm] kannst du nun ganz einfach eine Basis angeben, womit du auch die Dimension von [mm] $K^{m \times n}$ [/mm] und somit von $Abb(V, W)$ hast...
Falls einer der beiden Vektorraeume unendlich-dimensional ist und der andere nicht gerade der Nullraum, so ist $Abb(V, W)$ ebenfalls unendlich-dimensional.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:15 Mo 05.06.2006 | Autor: | maybe. |
Wow! das ging ja echt schnell mit der antwort vielen dank schon mal.
leider versteh ich das immer noch net so ganz. soll
[mm] K^{m \times n} [/mm] K hoch (m mal n) bedeuten ?? dann wäre die dimension ja auch einfach m*n. oder soll das x das kartesische produkt sein was ja keinen sinn machen würde, da m und n natürliche zahlen und keine mengen sind.
"dann liefert die Abbildung $ [mm] K^{m \times n} \to [/mm] Abb(V, W) $, $ [mm] K^{m \times n} \to [/mm] Abb(V, W) $, $ [mm] (a_{ij})_{ij} \mapsto \begin{cases} K^n \to K^m \\ v_i \mapsto \sum_{j=1}^m a_{ij} w_j \end{cases} [/mm] $ einen Isomorphismus (die Umkehrabbildung ist durch die Darstellungsmatrix von $ f [mm] \in [/mm] Abb(V, W) $ bzgl. der obigen Basen gegeben). "
das verstehe ich gar nicht. soll [mm] (a_{ij})_{ij} [/mm] eine folge sein ? und wofür brauche ich diesen isomorphismus ?
bleiben wir mal dabei ,dass die beiden vektorräume endlich sind.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:49 Mo 05.06.2006 | Autor: | felixf |
> Wow! das ging ja echt schnell mit der antwort vielen dank
> schon mal.
> leider versteh ich das immer noch net so ganz. soll
> [mm] K^{m \times n}[/mm] K hoch (m mal n) bedeuten ?? dann wäre die
[mm] $K^{m \times n}$ [/mm] ist die Menge aller $m [mm] \times [/mm] n$-Matrizen mit Koeffizienten in $K$ (und somit $m [mm] \cdot [/mm] n$-dimensional als $K$-Vektorraum).
> dimension ja auch einfach m*n. oder soll das x das
> kartesische produkt sein was ja keinen sinn machen würde,
> da m und n natürliche zahlen und keine mengen sind.
> "dann liefert die Abbildung [mm]K^{m \times n} \to Abb(V, W) [/mm],
> [mm]K^{m \times n} \to Abb(V, W) [/mm], [mm](a_{ij})_{ij} \mapsto \begin{cases} K^n \to K^m \\ v_i \mapsto \sum_{j=1}^m a_{ij} w_j \end{cases}[/mm]
> einen Isomorphismus (die Umkehrabbildung ist durch die
> Darstellungsmatrix von [mm]f \in Abb(V, W)[/mm] bzgl. der obigen
> Basen gegeben). "
>
> das verstehe ich gar nicht. soll [mm](a_{ij})_{ij}[/mm] eine folge
> sein ? und wofür brauche ich diesen isomorphismus ?
Das ist die $m [mm] \times [/mm] n$-Matrix mit den Eintrag [mm] $a_{ij}$ [/mm] an der $(i, j)$-Stelle.
Kommst du damit weiter?
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:11 Mo 05.06.2006 | Autor: | maybe. |
hi felixf
echt nochmal vielen dank fuer deine hilfe. matrizen haben wir in der vorlesung noch gar nicht besprochen. gibts da nicht noch nen anderen loesungsansatz ohne die matrix ? ich hab auch (dummerweise??) etwas allgemeiner gefragt als die aufgabenstellung war:
zu bestimmen war eigentlich die dimension von end(V) in abhaengigkeit von dim(V). weiss net ob das nen grossen unterschied im ansatz macht wenn ja mach ich nen neuen thread auf.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Mo 05.06.2006 | Autor: | felixf |
Hallo!
> echt nochmal vielen dank fuer deine hilfe. matrizen haben
> wir in der vorlesung noch gar nicht besprochen. gibts da
> nicht noch nen anderen loesungsansatz ohne die matrix ?
Ihr hattet noch keine Matrizen?! Aber Basen und Dimension von Vektorraeumen hattet ihr schon? Komische Vorgehensweise... Nunja egal :)
Wenn du eine Basis [mm] $(v_1, \dots, v_n)$ [/mm] von $V$ hast, dann gibt es zu jeder Wahl von beliebigen Vektoren [mm] $(w_1, \dots, w_n)$ [/mm] von $W$ genau eine lineare Abbildung $f : V [mm] \to [/mm] W$ mit [mm] $f(v_i) [/mm] = [mm] w_i$, [/mm] $1 [mm] \le [/mm] i [mm] \le [/mm] n$.
Das hattet ihr schon, oder? Wenn ihr das nicht hattet musst du schon wesentlich konkreter werden mit dem was ihr schon hattet, ansonsten koennen wir dir wohl nicht weiterhelfen...
Wenn [mm] $(w_1, \dots, w_m)$ [/mm] eine Basis von $W$ ist, kannst du die linearen [mm] Abbildungen~$f_{ij} [/mm] : V [mm] \to [/mm] W$ konstruieren mit [mm] $f_{ij}(v_i) [/mm] = [mm] v_j$ [/mm] und [mm] $f_{ij}(v_k) [/mm] = 0$ fuer $k [mm] \neq [/mm] i$. Die Behauptung ist nun, das diese Abbildungen eine Basis bilden. Versuch das mal zu zeigen.
> ich
> hab auch (dummerweise??) etwas allgemeiner gefragt als die
> aufgabenstellung war:
> zu bestimmen war eigentlich die dimension von end(V) in
> abhaengigkeit von dim(V). weiss net ob das nen grossen
> unterschied im ansatz macht wenn ja mach ich nen neuen
> thread auf.
Das macht keinen Unterschied, ist halt der Spezialfall $V = W$
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:31 Mo 05.06.2006 | Autor: | maybe. |
>Ihr hattet noch keine Matrizen?! Aber Basen und Dimension von >Vektorraeumen hattet ihr schon? Komische Vorgehensweise... Nunja egal :)
is wirklich so. erst basen und jetzt lin.abb.
>Wenn du eine Basis $ [mm] (v_1, \dots, v_n) [/mm] $ von $ V $ hast, dann gibt es zu >jeder Wahl von beliebigen Vektoren $ [mm] (w_1, \dots, w_n) [/mm] $ von $ W $ genau >eine lineare Abbildung $ f : V [mm] \to [/mm] W $ mit $ [mm] f(v_i) [/mm] = [mm] w_i [/mm] $, $ 1 [mm] \le [/mm] i [mm] \le [/mm] n $.
>Das hattet ihr schon, oder? Wenn ihr das nicht hattet musst du schon >wesentlich konkreter werden mit dem was ihr schon hattet, ansonsten >koennen wir dir wohl nicht weiterhelfen...
ja! das hilft danke.
>Wenn $ [mm] (w_1, \dots, w_m) [/mm] $ eine Basis von $ W $ ist, kannst du die linearen >Abbildungen~$ [mm] f_{ij} [/mm] : V [mm] \to [/mm] W $ konstruieren mit $ [mm] f_{ij}(v_i) [/mm] = [mm] v_j [/mm] $ und $ [mm] >f_{ij}(v_k) [/mm] = 0 $ fuer $ k [mm] \neq [/mm] i $. Die Behauptung ist nun, das diese >Abbildungen eine Basis bilden. Versuch das mal zu zeigen.
ok ich probiers jetzt noch mal vielen dank!
>Das macht keinen Unterschied, ist halt der Spezialfall $ V = W $
gut so dachte ich es mir urspruenglich auch
thx !
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:20 Mo 05.06.2006 | Autor: | maybe. |
oje ich bin glaub echt ein schwieriger fall.
muss es denn nicht heissen $ [mm] f_{ij}(v_i) [/mm] = [mm] w_j [/mm] $ weil man nach W und nicht nach V abbildet. Ich hab verstanden, dass es zu jedem Basisvektor von V eine eindeutige lin.Abb. zu einem eindeutigen [mm] $w_j$ [/mm] gibt.
aber was bedeutet der indexk ij in $ [mm] f_{ij} [/mm] : V [mm] \to [/mm] W $ und wo es glaub bei mir (unter anderem) haengt ist, dass ich keine ahnung habe wie abbildungen eine basis bilden koennen. eine basis ist doch ein lin.unabh. EZS und sei E eine Basis von V dann gilt doch V=<E>= [mm] \summe_{r=1}^{n} \lambda_r e_r, e_r \in [/mm] E, [mm] \lambda \in [/mm] K . wie kann ich jetzt z.B. $ [mm] f_{ij}(v_i) [/mm] = [mm] v_j [/mm] $ mit [mm] \lambda [/mm] multiplizieren ? und ueberhaupt wie kann ich linearkombinationen aus verschiedenen abbildungen bilden ?
diese aufgabe macht mich echt kirre, sie ist viel schwerer als die anderen auf dem blatt.
waer supernett wenn mir jemand weiterhelfen kann
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:53 Mo 05.06.2006 | Autor: | felixf |
Hallo!
> oje ich bin glaub echt ein schwieriger fall.
> muss es denn nicht heissen [mm]f_{ij}(v_i) = w_j[/mm] weil man nach
Ja, das sollte es sein. Hab mich vertippt... :)
> W und nicht nach V abbildet. Ich hab verstanden, dass es zu
> jedem Basisvektor von V eine eindeutige lin.Abb. zu einem
> eindeutigen [mm]w_j[/mm] gibt.
> aber was bedeutet der indexk ij in [mm]f_{ij} : V \to W[/mm] und wo
Damit die $f$'s verschiedene Namen haben. Ich moechte gerne $n [mm] \cdot [/mm] m$ verschiedene $f$'s haben, und zwar fuer jedes $(i, j) [mm] \in \{ 1, \dots, n\} \times \{ 1, \dots, m \}$ [/mm] genau eins.
> es glaub bei mir (unter anderem) haengt ist, dass ich keine
> ahnung habe wie abbildungen eine basis bilden koennen. eine
Genauso wie Vektoren: Jede lineare Abbildung $V [mm] \to [/mm] W$ muss eindeutig als Kombination dieser Basis-Abbildungen geschrieben werden koennen.
> basis ist doch ein lin.unabh. EZS und sei E eine Basis von
> V dann gilt doch V=<E>= [mm]\summe_{r=1}^{n} \lambda_r e_r, e_r \in[/mm]
> E, [mm]\lambda \in[/mm] K . wie kann ich jetzt z.B. [mm]f_{ij}(v_i) = v_j[/mm]
> mit [mm]\lambda[/mm] multiplizieren ? und ueberhaupt wie kann ich
Du kannst [mm] $f_{ij}: [/mm] V [mm] \to [/mm] W$ mit [mm] $\lambda$ [/mm] multiplizieren. Schliesslich ist $Abb(V, W)$ ein $K$-Vektorraum (wenn dir das nicht klar ist, schau dir das zuerst nochmal an!).
LG Felix
|
|
|
|