www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDimension K-Vektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Dimension K-Vektorraum
Dimension K-Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension K-Vektorraum: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:34 Sa 19.11.2005
Autor: Niente

Hallo,

ich weiß bei den folgenden Aufgabenstellungen gar nicht, was ich machen soll:

1. Sei V ein endlichdimensionaler K-Vektorraum. Definiere
d(V) = max [mm] {n\in \IN| Es gibt Untervektorräume U_{0}, U_{1}, ... U_{n} von V, so dass U_{0} \subset U_{1} \subset ... \subset U_{n}}. [/mm] Die Gleichheit der Teilmengen wird ausgeschlossen ( [mm] \subseteq [/mm] - Zeichen mit Strich "/" durch das "Gleich"_)
zu zeigen ist, dass d(V) = dim (V) gilt.

2. Sei V ein endlichdimensionaler K-Vektorraum und seien [mm] U_{1}, [/mm] ..., U{k} Untervektorräume von V. Zeigen Sie:

dim [mm] (U_{1} \cap [/mm] ...  [mm] \cap U_{k}) \ge \summe_{i=1}^{k} [/mm] dim [mm] (U_{i}) [/mm] - (k-1) dim (V).

Ich weiß, dass man eigene Vorschläge machen müsste... würde ich ja auch gerne tun, aber ich habe wirklich KEINE Ahnung, was ich machen soll. Ich hoffe, mir hilft trotzdem jemand!!

Viiielen lieben Dank im Voraus!!!!
Ich verstehe leider GAR nicht, was ich hier machen soll.

        
Bezug
Dimension K-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Sa 19.11.2005
Autor: SEcki


> 1. Sei V ein endlichdimensionaler K-Vektorraum. Definiere
> d(V) = max [mm]{n\in \IN| Es gibt Untervektorräume U_{0}, U_{1}, ... U_{n} von V, so dass U_{0} \subset U_{1} \subset ... \subset U_{n}}.[/mm]
> Die Gleichheit der Teilmengen wird ausgeschlossen (
> [mm]\subseteq[/mm] - Zeichen mit Strich "/" durch das "Gleich"_)
>  zu zeigen ist, dass d(V) = dim (V) gilt.

Die Aussage ist aber schon klar, oder? Wenn V jetzt endlich dimensional ist, dann gibt es eine endliche Basis - mit welcher Länge? Kannst du nun eine Folge von Unterräumen angeben, die üassend mit der Dimension endet? Jetzt hast du eine Folge gegeben, die immer echt größer wird, jetzt sind alle Unterräume endlich-dimensional und verschachtelt, also kannst du, falls du für k-1 schon eine Basis hast, diese zu eienr Basis von [m]U_k[/m] ergänzen. Was ist also die Minimalanzahl der Elemente der Basis von [m]U_n[/m]?

> 2. Sei V ein endlichdimensionaler K-Vektorraum und seien
> [mm]U_{1},[/mm] ..., U{k} Untervektorräume von V. Zeigen Sie:
>  
> dim [mm](U_{1} \cap[/mm] ...  [mm]\cap U_{k}) \ge \summe_{i=1}^{k}[/mm] dim
> [mm](U_{i})[/mm] - (k-1) dim (V).

Diemnsionssatz und Induktion.

> Ich weiß, dass man eigene Vorschläge machen müsste... würde
> ich ja auch gerne tun, aber ich habe wirklich KEINE Ahnung,
> was ich machen soll. Ich hoffe, mir hilft trotzdem
> jemand!!

Setz dich mal mit oberen auseinander - und lies auch Sachen im Skript nach, Dimensionssatz vor allem.

SEcki

Bezug
                
Bezug
Dimension K-Vektorraum: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:01 Sa 19.11.2005
Autor: Niente

Hallo,

vielen Dank für deine Antwort. Ich weiß leider trotzdem nicht, wie ich weiter vorgehen soll. (zu1.)
Wenn V endlich ist, dann gibt es eine Basis, bestehend aus unabhängigen Vektoren [mm] (v_{1}, [/mm] ...., v{n}) mit der Länge (Dimension) dimV=n.
Zu dieser Basis gibt es dann zu jedem v [mm] \in [/mm] V ein ( [mm] \lambda_{1}, [/mm] ... [mm] \lambda_{n}) [/mm] für das v= [mm] \lambda_{1}v_{1}, [/mm] ... [mm] \lambda_{n}v_{n}) [/mm] gilt. [mm] L(v_{1}, [/mm] ... [mm] v_{n}) [/mm] ist dann ein Untervektorraum. Von diesem Untervektorraum kann man nun weiter ausgehen und einen neuen "zeugen"... Die Länge der zeugbaren Untervektorräume ist doch dann auch dimV=n, oder? Ich verstehe das alles nicht:(, was sagt mir das - wenn das überhaupt stimmen sollte, was ich geschrieben habe... ich verstehe leider gar nicht, was du mir sagen willst;(

> Wenn V jetzt endlich dimensional ist, dann gibt es eine endliche Basis - mit
> welcher Länge? Kannst du nun eine Folge von Unterräumen
> angeben, die passend mit der Dimension endet? Jetzt hast du
> eine Folge gegeben, die immer echt größer wird, jetzt sind
> alle Unterräume endlich-dimensional und verschachtelt, also
> kannst du, falls du für k-1 schon eine Basis hast, diese zu
> eienr Basis von [m]U_k[/m] ergänzen. Was ist also die
> Minimalanzahl der Elemente der Basis von [m]U_n[/m]?


Ich hoffe, es kann mir jemand helfen
Vielen Dank schon einmal!

Bezug
                        
Bezug
Dimension K-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Sa 19.11.2005
Autor: SEcki


> vielen Dank für deine Antwort. Ich weiß leider trotzdem
> nicht, wie ich weiter vorgehen soll. (zu1.)

Nur bei der 1? Wie gehen die Lösungen für den Rest genau?

>  Wenn V endlich ist, dann gibt es eine Basis, bestehend aus
> unabhängigen Vektoren [mm](v_{1},[/mm] ...., v{n}) mit der Länge
> (Dimension) dimV=n.

Ja.

> Zu dieser Basis gibt es dann zu jedem v [mm]\in[/mm] V ein (
> [mm]\lambda_{1},[/mm] ... [mm]\lambda_{n})[/mm] für das v= [mm]\lambda_{1}v_{1},[/mm]
> ... [mm]\lambda_{n}v_{n})[/mm] gilt. [mm]L(v_{1},[/mm] ... [mm]v_{n})[/mm] ist dann
> ein Untervektorraum. Von diesem Untervektorraum kann man
> nun weiter ausgehen und einen neuen "zeugen"... Die Länge
> der zeugbaren Untervektorräume ist doch dann auch dimV=n,
> oder?

Was willst du hier wie machen? Du hast im ersten Schritt schon ganz V - nicht was du willst.

> Ich verstehe das alles nicht:(, was sagt mir das -
> wenn das überhaupt stimmen sollte, was ich geschrieben
> habe... ich verstehe leider gar nicht, was du mir sagen
> willst;(

Du sollst aus der Basis ao eine Folge konstruieren, wenn du partout nicth draufkommst: [m]\{\}\subset \{v_1\}\subset \{v_1,v_2\}[/m]. Wie geht's weiter? Was sind die erezuehten Unterräume?
  
SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]