www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDimension Teilraum #2
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Dimension Teilraum #2
Dimension Teilraum #2 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension Teilraum #2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 So 22.05.2011
Autor: BarneyS

Aufgabe
Welche Dimension hat der Teilraum des Vektorraums aller $ (n [mm] \times [/mm] n) $ -Matrizen der Spur Null, d.h. alle Matrizen mit

[mm] tr A := \summe_{i=1}^{n}a_{ii} = 0 [/mm] ?

Hallo,

erstmal ein paar Verständnisfragen:

Den Vektorraum der Matrizen bildet man, indem man alle Spaltenvektoren der Matrizen als Baisis nimmt?

Demnach wäre die Dimension dieses Raumes gleich der Anzahl linear unabhängiger Spaltenvektoren, also der Rang der Matrix, richtig?

Das heißt in dieser Aufgabe, wenn man alle $ (n [mm] \times [/mm] n) $ Matrizen nimmt, wäre der Rang n?

So, jetzt zum Teilraum:

Wenn man sich mal ein Beispiel anschaut:

[mm] \pmat{ a_{11} & a_{12} \\ a_{21} & -a_{11} } [/mm]

So sieht man, dass die Dimension 2 sein muss, da das die Maximalzahl linear unabhängiger Vektoren ist, die für alle $ [mm] a_{ij} [/mm] $ gebildet werden können...

Ich vermute, dass dann die Dimension aller Matrizen der Spur Null gleich n ist?

Aber auch hier habe ich keine Idee, wie ich das mathematisch formal beweisen kann?

Danke vielmals für Hilfe :)


        
Bezug
Dimension Teilraum #2: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 So 22.05.2011
Autor: rainerS

Hallo!

> Welche Dimension hat der Teilraum des Vektorraums aller [mm](n \times n)[/mm]
> -Matrizen der Spur Null, d.h. alle Matrizen mit
>  
> [mm]tr A := \summe_{i=1}^{n}a_{ii} = 0[/mm] ?
>  Hallo,
>  
> erstmal ein paar Verständnisfragen:
>  
> Den Vektorraum der Matrizen bildet man, indem man alle
> Spaltenvektoren der Matrizen als Baisis nimmt?

Nein, indem du die Matrizen als Zahlentupel auffasst. Dieser Vektorraum hat die Dimension [mm] $n^2$. [/mm]

> So, jetzt zum Teilraum:
>  
> Wenn man sich mal ein Beispiel anschaut:
>  
> [mm]\pmat{ a_{11} & a_{12} \\ a_{21} & -a_{11} }[/mm]
>  
> So sieht man, dass die Dimension 2 sein muss, da das die
> Maximalzahl linear unabhängiger Vektoren ist, die für
> alle [mm]a_{ij}[/mm] gebildet werden können...

Siehe oben: die Dimension ist 4, da jede Matrix auf vier unabhängigen reellen Zahlen besteht.

> Ich vermute, dass dann die Dimension aller Matrizen der
> Spur Null gleich n ist?

Nein.  Die Spurbedingung [mm]\summe_{i=1}^{n}a_{ii} = 0[/mm] ist eine lineare Gleichung für die Elemente der Matrix.

Viele Grüße
   Rainer

Bezug
                
Bezug
Dimension Teilraum #2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Mo 23.05.2011
Autor: BarneyS


> Hallo!
>  
> > Welche Dimension hat der Teilraum des Vektorraums aller [mm](n \times n)[/mm]
> > -Matrizen der Spur Null, d.h. alle Matrizen mit
>  >  home tab 2 playing filter games game file:1 game:1100 node:0
> > [mm]tr A := \summe_{i=1}^{n}a_{ii} = 0[/mm] ?
>  >  Hallo,
>  >  
> > erstmal ein paar Verständnisfragen:
>  >  
> > Den Vektorraum der Matrizen bildet man, indem man alle
> > Spaltenvektoren der Matrizen als Baisis nimmt?
>  
> Nein, indem du die Matrizen als Zahlentupel auffasst.
> Dieser Vektorraum hat die Dimension [mm]n^2[/mm].
>  
> > So, jetzt zum Teilraum:
>  >  
> > Wenn man sich mal ein Beispiel anschaut:
>  >  
> > [mm]\pmat{ a_{11} & a_{12} \\ a_{21} & -a_{11} }[/mm]
>  >  
> > So sieht man, dass die Dimension 2 sein muss, da das die
> > Maximalzahl linear unabhängiger Vektoren ist, die für
> > alle [mm]a_{ij}[/mm] gebildet werden können...
>  
> Siehe oben: die Dimension ist 4, da jede Matrix auf vier
> unabhängigen reellen Zahlen besteht.
>  
> > Ich vermute, dass dann die Dimension aller Matrizen der
> > Spur Null gleich n ist?
>  
> Nein.  Die Spurbedingung [mm]\summe_{i=1}^{n}a_{ii} = 0[/mm] ist
> eine lineare Gleichung für die Elemente der Matrix.
>
> Viele Grüße
>     Rainer

Ok, müsste dann die Dimension $ [mm] n^2 [/mm] -1 $ sein?

Da ja (siehe mein anderer Post Dimension Teilram) die Dimension eines Teilraums, der aus dem Lösungsvektor einer linearen homogenen Gleichung mit n Unbekannten besteht, gleich n-1 ist.

Bezug
                        
Bezug
Dimension Teilraum #2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 24.05.2011
Autor: rainerS

Hallo!

> > Hallo!
>  >  
> > > Welche Dimension hat der Teilraum des Vektorraums aller [mm](n \times n)[/mm]
> > > -Matrizen der Spur Null, d.h. alle Matrizen mit
>  >  >  home tab 2 playing filter games game file:1
> game:1100 node:0
>  > > [mm]tr A := \summe_{i=1}^{n}a_{ii} = 0[/mm] ?

>  >  >  Hallo,
>  >  >  
> > > erstmal ein paar Verständnisfragen:
>  >  >  
> > > Den Vektorraum der Matrizen bildet man, indem man alle
> > > Spaltenvektoren der Matrizen als Baisis nimmt?
>  >  
> > Nein, indem du die Matrizen als Zahlentupel auffasst.
> > Dieser Vektorraum hat die Dimension [mm]n^2[/mm].
>  >  
> > > So, jetzt zum Teilraum:
>  >  >  
> > > Wenn man sich mal ein Beispiel anschaut:
>  >  >  
> > > [mm]\pmat{ a_{11} & a_{12} \\ a_{21} & -a_{11} }[/mm]
>  >  >  
> > > So sieht man, dass die Dimension 2 sein muss, da das die
> > > Maximalzahl linear unabhängiger Vektoren ist, die für
> > > alle [mm]a_{ij}[/mm] gebildet werden können...
>  >  
> > Siehe oben: die Dimension ist 4, da jede Matrix auf vier
> > unabhängigen reellen Zahlen besteht.
>  >  
> > > Ich vermute, dass dann die Dimension aller Matrizen der
> > > Spur Null gleich n ist?
>  >  
> > Nein.  Die Spurbedingung [mm]\summe_{i=1}^{n}a_{ii} = 0[/mm] ist
> > eine lineare Gleichung für die Elemente der Matrix.
> >
> > Viele Grüße
>  >     Rainer
>
> Ok, müsste dann die Dimension [mm]n^2 -1[/mm] sein?
>  
> Da ja (siehe mein anderer Post Dimension Teilram) die
> Dimension eines Teilraums, der aus dem Lösungsvektor einer
> linearen homogenen Gleichung mit n Unbekannten besteht,
> gleich n-1 ist.

Genau, eine lineare Bedingung reduziert die Dimension um 1.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]