www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDimension bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Dimension bestimmen
Dimension bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension bestimmen: Bitte Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:01 So 11.12.2011
Autor: Zelda

Aufgabe
Bestimmen Sie die Dimensionen von Kern F und Bild F für die Standartinterpretation [mm]F=F_{A} [/mm] von [mm]A=\pmat{0 & 1 & 2 & 1 & 0\\ 0 & 3 & 0 & 2 & 1\\ 0 & 3 & 0 & 3 & 0}\in\IR^{3x5}. [/mm]


Vor.: [mm]A=\pmat{0 & 1 & 2 & 1 & 0\\ 0 & 3 & 0 & 2 & 1\\ 0 & 3 & 0 & 3 & 0}\in\IR^{3x5}, F=F_{A}[/mm]
Beh.:i.) Dim Bild F= 3
     ii.)Dim Kern F= 1

i.) Die Matrix A durch Zeilenumformungen auf Zeilenstufenform bringen.
(...) Aus der Matrix A geht die Matrix A hervor mit [mm]A=\pmat{0 & 3 & 0 & 3 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 1 & -1} [/mm]
SR(A):= Spann ([mm] [/mm][mm]v_{1},...,v_{4} [/mm]) mit [mm]v_{1}=\pmat{3\\ 0\\ 0}, v_{2}=\pmat{0\\ 2\\ 0},v_{3}=\pmat{3\\ 0\\ 1},v_{4}=\pmat{0\\ 0\\ -1} [/mm], aus dim SR(A) folgt, dass auch rg(A)= 4 ist . Und dim V= 4.
Aus dem Spann ([mm]v_{1},..,v_{4} [/mm]) folgt, dass dim Bild F= 3 ist.

ii.)Nach Dimensionsformel aus der VL folgt:
dim V- dim Bild F= dim Kern F
Einsetzen der in i.) ermittelten Werte:

4-3=1, der Kern F= 1.

[mm]\blacksquare [/mm]

        
Bezug
Dimension bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 So 11.12.2011
Autor: donquijote


> Bestimmen Sie die Dimensionen von Kern F und Bild F für
> die Standartinterpretation [mm]F=F_{A} [/mm] von [mm]A=\pmat{0 & 1 & 2 & 1 & 0\\ 0 & 3 & 0 & 2 & 1\\ 0 & 3 & 0 & 3 & 0}\in\IR^{3x5}.[/mm]
>  
> Vor.: [mm]A=\pmat{0 & 1 & 2 & 1 & 0\\ 0 & 3 & 0 & 2 & 1\\ 0 & 3 & 0 & 3 & 0}\in\IR^{3x5}, F=F_{A}[/mm]
>  
> Beh.:i.) Dim Bild F= 3
>       ii.)Dim Kern F= 1
>  
> i.) Die Matrix A durch Zeilenumformungen auf
> Zeilenstufenform bringen.
>  (...) Aus der Matrix A geht die Matrix A hervor mit
> [mm]A=\pmat{0 & 3 & 0 & 3 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 1 & -1}[/mm]

ok, außer dass du der neuen matrix einen anderen namen geben solltest

>  
> SR(A):= Spann ([mm] [/mm][mm]v_{1},...,v_{4} [/mm]) mit [mm]v_{1}=\pmat{3\\ 0\\ 0}, v_{2}=\pmat{0\\ 2\\ 0},v_{3}=\pmat{3\\ 0\\ 1},v_{4}=\pmat{0\\ 0\\ -1} [/mm],
> aus dim SR(A) folgt, dass auch rg(A)= 4 ist .

wie kann eine 3x5-matrix rang 4 haben? wenn die matrix in zeilenstufenform ist, heißt das noch nicht, dass die spaltenvektoren linear unabhängig sind.

> Und dim V=
> 4.

und was ist V? dim V=4 passt jedenfalls nicht

>  Aus dem Spann ([mm]v_{1},..,v_{4} [/mm]) folgt, dass dim Bild F= 3
> ist.
>  
> ii.)Nach Dimensionsformel aus der VL folgt:
>  dim V- dim Bild F= dim Kern F
>  Einsetzen der in i.) ermittelten Werte:
>  
> 4-3=1, der Kern F= 1.
>
> [mm]\blacksquare [/mm]


Bezug
                
Bezug
Dimension bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 So 11.12.2011
Autor: Zelda

danke don q., ich melde mich gleich nochmal zurück.


Bezug
                
Bezug
Dimension bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 11.12.2011
Autor: Zelda


...also der ZR(A)=3, in meinem Skript steht das dim SR(A)=dim ZR(A)=rg(A), ah! Also ist der rg(A)=3.

Daraus folgt dann dim [mm]F_{A}[/mm]= 3, mit der Dimensionsformel ergibt das dann, dass dim Kern [mm]F=0[/mm] ist. Somit ist [mm]F_{A}[/mm] injektiv. ???


Bezug
                        
Bezug
Dimension bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 11.12.2011
Autor: donquijote


>
> ...also der ZR(A)=3, in meinem Skript steht das dim
> SR(A)=dim ZR(A)=rg(A), ah! Also ist der rg(A)=3.

das stimmt jetzt

>  
> Daraus folgt dann dim [mm]F_{A}[/mm]= 3,

ok

> mit der Dimensionsformel
> ergibt das dann, dass dim Kern [mm]F=0[/mm] ist. Somit ist [mm]F_{A}[/mm]
> injektiv. ???
>  

das stimmt nicht. überleg dir nochmal, was der definitionsbereich von [mm] F_A [/mm] und dessen dimension ist.

Bezug
                                
Bezug
Dimension bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 So 11.12.2011
Autor: Zelda


[mm]F=F_{A}, [/mm] der [mm]rg(A)=3, [/mm] [also ist (ich dreh langsam durch ;)) das Bild [mm]F_{A}=[/mm] SR(A), dieser ist =4.] dim Kern [mm]F_{A}=[/mm] n- rg(A)...
Also ist der dim Kern [mm]F_{A}=[/mm]2, somit ist dim Bild [mm]F_{A}=[/mm]1. ???

was für ein tag...




Bezug
                                        
Bezug
Dimension bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 So 11.12.2011
Autor: donquijote


>
> [mm]F=F_{A},[/mm] der [mm]rg(A)=3,[/mm] [also ist (ich dreh langsam durch ;))
> das Bild [mm]F_{A}=[/mm] SR(A), dieser ist =4.] dim Kern [mm]F_{A}=[/mm] n-
> rg(A)...
>  Also ist der dim Kern [mm]F_{A}=[/mm]2, somit ist dim Bild [mm]F_{A}=[/mm]1.
> ???
>  
> was für ein tag...

ich schlage vor, du legst dich schlafen, mit mathe-übungen scheint das heute abend nix mehr zu werden ...

also: A ist eine 3x5-Matrix mit Rang 3. Damit ist [mm] F_A:\IR^5\to\IR^3 [/mm] mit
dim [mm] Bild(F_A) [/mm] = dim SR(A) = rg(A) = 3 [mm] (=\dim\IR^3, [/mm] also ist [mm] F_A [/mm] surjektiv) und
dim [mm] Kern(F_A) [/mm] = [mm] \dim\IR^5 [/mm] - rg(A) = 5-3=2
eine 4 kommt hier nirgends vor (vielleicht weil sie im chinesischen kulturraum als unglückszahl betrachtet wird)

>  
>
>  


Bezug
                                                
Bezug
Dimension bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 So 11.12.2011
Autor: Zelda

gute nacht ^^ und bis bald


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]