www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDimensionalität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Dimensionalität
Dimensionalität < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimensionalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 So 07.06.2009
Autor: aga88

Aufgabe
Beispielaufgabe:

x1 + 2 x2+ 2 x4 = 4
2x1 + 4x2+ r x3 =1
s x1+ x3+ t x4 = 1

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo. Morgen schreibe ich eine Klausur. Und nun habe ich noch letzte Fragen zu klären.

Kann mir jemand Schritt für Schritt erklären wie ich die Frage nach der Dimensionalität löse?

Konkret, wenn eine Frage lautet: Für welche Wahl der Parameter ist die Lösungsmenge des Systems eindimensional. Für welche Parameter zweidimensional?

Für die oben stehende habe ich die Lösung nur verstehe ich diese nicht ganz.

Für eindimensional: muss gelten rt ungleich -4
Für zweidimensional: im Fall s=0 und rt= -4

        
Bezug
Dimensionalität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 07.06.2009
Autor: angela.h.b.


> Beispielaufgabe:
>
> x1 + 2 x2+ 2 x4 = 4
>  2x1 + 4x2+ r x3 =1
>  s x1+ x3+ t x4 = 1

Hallo,

der übersichtlichkeit halber stelle ich gleich erstmal die erweiterte Koeffizientenmatrix auf.

[mm] \pmat{1&2&2&&|4\\2&4&r&&|1\\s&1&t&&|1}. [/mm]

Alles, was Du später erfahren möchtest, kannst Du an der Zeilenstufenform ablesen.
Deshalb wäre ein möglicher Weg, daß Du die Matrix zunächst einmal auf ZSF bringst.

Ein anderer Weg berücksichtigt, daß mehr als eine Lösung oder keine Lösung bloß vorkommen kann, wenn der Rang der Koeffizientenmatrix nicht =3 ist, die Determinante der Koeffizientenmatrix wäre in diesen Fällen =0.
Man könnte also mithilfe der Determinante auch zunächst feststellen, für welche r,s,t man das Gleichungsystem überhaupt bloß zu untersuchen braucht, und für diese dann anschließend die ZSF betrachten.

Ich glaube, daß es übersichtlicher ist, wenn wir über die ZSF erst reden, wenn sie vorliegt.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]