www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDirichlet
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Dirichlet
Dirichlet < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet: integr.
Status: (Frage) beantwortet Status 
Datum: 19:26 Fr 28.10.2005
Autor: brain86

Hallo.
Ich hab mal drei kurze Fragen und hoffe es kann mir jemand weiterhelfen.
a)Ist die Dirichletfunktion D eine LEvifunktion auf I=[0,1]?
b)Die Funktion D ist eine Levifunktion auf I=[0,1]? stimmt das?
c)Die Funktion D ist integrierbar auf I=[0,1]?  oder nicht?

        
Bezug
Dirichlet: IDee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 So 30.10.2005
Autor: brain86

Also ich bin der MEinung, dass a) richtig ist und b),c) falsch sind.

ist das richtig?

Bezug
        
Bezug
Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 So 30.10.2005
Autor: Toellner

Hallo Brain,

mir ist der Unterschied zwischen a) und b) nicht klar:

>  a)Ist die Dirichletfunktion D eine LEvifunktion auf
> I=[0,1]?
>  b)Die Funktion D ist eine Levifunktion auf I=[0,1]? stimmt
> das?

Den müsstest Du nochmal erklären.
Auch kenne ich den Begriff "Levifunktion" nicht, hab ihn auch nirgends gefunden: gib mal 'ne Definition an!

>  c)Die Funktion D ist integrierbar auf I=[0,1]?  oder
> nicht?  

Ja, sie ist lebesgueintegrabel: sie unterscheidet sich von der Nullfunktion nur um eine Ausnahmemenge vom Maß 0, i.e. [mm] \IQ. [/mm]
Du kannst die rationalen Zahlen durchnummerieren, [mm] q_i [/mm]  mit i [mm] \in [/mm] IN, und sie in eine offene Umgebung einhüllen der Art [mm] U_n [/mm] := [mm] \bigcup_{i\in N} (q_i-2^{-ni},q_i+2^{-ni}), [/mm] also um jedes [mm] q_i [/mm] wird eine [mm] \epsilon [/mm] -Umgebung (hier auf Basis 0,5) ausgestochen, die Du mit wachsendem n immer kleiner machen kannst: für jedes n ist nämlich die Summe der Intervalle von [mm] U_n [/mm] eine geometrische Reihe (Grenzwert hängt von n ab) deren Gesamtlänge Du mit n gegen Null drücken kannst. Also sind die rationalen Zahlen in [0;1] vom Maß 0. Damit ist das Integral von D gleich dem Integral der Nullfunktion.

Grüße, Richard

Bezug
        
Bezug
Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mo 31.10.2005
Autor: soulid

ich möchte eigentlich nur eine berichtigung deiner gestellten aufgaben schreiben.
b und c müssen nicht heißen:
b)Die Funktion D ist eine Levifunktion auf I=[0,1]? stimmt das?
c)Die Funktion D ist integrierbar auf I=[0,1]?  oder nicht?
sondern:
b)Die Funktion - D ist eine Levifunktion auf I=[0,1]? stimmt das?
c)Die Funktion - D ist integrierbar auf I=[0,1]?  oder nicht?

ich habe nämlich den selben mathekurs und das selbe verständnisproblem, was das komplette blatt betrifft.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]