Disjunkte Teilmengen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | zeigen sie: für reele Zahlen [mm] x_{1},...x_{n}>0 [/mm] gilt
[mm] \summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1 [/mm] |
Also ich denke hier sollte ich die Induktion anwenden, jedoch komme ich nich sehr weit damit.
I.A. n=1: 1=1 passt
I.V. [mm] \summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1
[/mm]
I.S. n+1 : [mm] \summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n+1} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1
[/mm]
so würde ich anfangen, aber ich komme nicht weiter, kann mir jemand weiter helfen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:59 Mo 06.05.2013 | Autor: | felixf |
Moin!
> zeigen sie: für reele Zahlen [mm]x_{1},...x_{n}>0[/mm] gilt
> [mm]\summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1[/mm]
>
> Also ich denke hier sollte ich die Induktion anwenden,
Ja.
> jedoch komme ich nich sehr weit damit.
>
> I.A. n=1: 1=1 passt
> I.V. [mm]\summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1[/mm]
>
> I.S. n+1 : [mm]\summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n+1} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1[/mm]
Erstmal: so ist es schlichtweg falsch, da du einige Vorkommnisse von $n$ nicht durch $n + 1$ ersetzt hast.
> so würde ich anfangen, aber ich komme nicht weiter, kann
> mir jemand weiter helfen?
Du musst die Summe ueber alle Partitionen [mm] $\sigma \in S_{n+1}$ [/mm] aufteilen in $n + 1$ verschiedene Summen. Und zwar je nachdem, was [mm] $\sigma(1)$ [/mm] ist. Aus dem Produkten zu dieser Summe kannst du dann [mm] $x_{\sigma(1)} [/mm] / [mm] (x_1 [/mm] + [mm] \dots [/mm] + [mm] x_{n+1})$ [/mm] ausklammern, womit du sowas wie [mm] $\sum_{i=1}^{n+1} \frac{x_i}{x_1 + \dots + x_{n+1}} \sum_{\sigma \in S_{n+1} \atop \sigma(1) = i} \prod_{j=1 \atop i \neq j}^{n+1} x_j \cdot \prod_{j=2}^{n+1} \frac{1}{x_{\sigma(j)} + \dots + x_{\sigma(n+1)}}$ [/mm] erhaelst. Du musst dir jetzt bewusst machen, dass die Summe [mm] $\sum_{\sigma \in S_{n+1} \atop \sigma(1) = i} \prod_{j=1 \atop i \neq j}^{n+1} x_j \cdot \prod_{j=2}^{n+1} \frac{1}{x_{\sigma(j)} + \dots + x_{\sigma(n+1)}}$ [/mm] gerade so eine wie in der Induktionsvoraussetzung ist. Deswegen ist ihr Wert gleich 1. Wenn du das einsetzt, kommst du auf das richtige Ergebnis.
Hier hab ich jetzt allerdings einen Haufen Zwischenschritte weggelassen, die du noch richtig ausformulieren musst.
LG Felix
|
|
|
|