www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKrypto,Kodierungstheorie,ComputeralgebraDiskrete Strukturen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Krypto,Kodierungstheorie,Computeralgebra" - Diskrete Strukturen
Diskrete Strukturen < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Strukturen: Idee für's Lösungsweg?
Status: (Frage) beantwortet Status 
Datum: 17:27 Mi 20.11.2013
Autor: infaktor

Aufgabe
Zeigen Sie, dass folgenden Aussagen gültig sind!
a) (a + b) mod n = (a mod n) + (b mod n) mod n
b) [mm] a^d [/mm] mod n = [mm] (a^{d-x}*a^x) [/mm] mod n = [mm] ((a^{d-x} [/mm] mod [mm] n)*(a^x [/mm] mod n)) mod n

Wie genau kann ich jetzt die Gültigkeit beweisen bzw. wie sollte ich an das Problem herangehen?

        
Bezug
Diskrete Strukturen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mi 20.11.2013
Autor: Ebri

Hi,

sagt dir das hier etwas:

Für [mm] a\in\IZ [/mm] und [mm] n\in\IN [/mm] mit n > 0 ist

a mod n := a - [mm] \lfloor [/mm] a/n [mm] \rfloor*n [/mm]

Ebri  

Bezug
                
Bezug
Diskrete Strukturen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mi 20.11.2013
Autor: infaktor

Leider nicht wirklich viel. Kann ich paar Kommentare dazu bitten?

Bezug
                        
Bezug
Diskrete Strukturen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 20.11.2013
Autor: Ebri


> Leider nicht wirklich viel. Kann ich paar Kommentare dazu
> bitten?

Das ist die Definition (bzw. ein Teil davon) von Modulo (mod) als Funktion.
Sie berechnet den Rest einer Division zweier Zahlen. Zum Beispiel 13 mod 5 = 3. Aber ich denke das ist soweit klar.

Daran habe ich spontan gedacht, vielleicht ist das nicht die gewünschte oder beste He­r­an­ge­hens­wei­se, aber a) habe ich damit zeigen können
( b) habe ich nicht probiert ).

[]Genaueres zu der Funktion hier.


Ebri
  


Bezug
        
Bezug
Diskrete Strukturen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 20.11.2013
Autor: felixf

Moin!

> Zeigen Sie, dass folgenden Aussagen gültig sind!
>  a) (a + b) mod n = (a mod n) + (b mod n) mod n

Eine andere Moeglichkeit, an das Problem heranzugehen, ist erstmal $a = [mm] q_1 [/mm] n + [mm] r_1$ [/mm] und $b = [mm] q_2 [/mm] n + [mm] r_2$ [/mm] mit $0 [mm] \le r_i [/mm] < n$ und [mm] $q_i, r_i \in \IZ$ [/mm] zu schreiben. Dann ist [mm] $r_1 [/mm] = a [mm] \bmod [/mm] n$ und [mm] $r_2 [/mm] = b [mm] \bmod [/mm] n$. Damit musst du dir ueberlegen, warum $(a + b) [mm] \bmod [/mm] n = [mm] (r_1 [/mm] + [mm] r_2) \bmod [/mm] n$ ist.

>  b) [mm]a^d[/mm] mod n = [mm](a^{d-x}*a^x)[/mm] mod n = [mm]((a^{d-x}[/mm] mod
> [mm]n)*(a^x[/mm] mod n)) mod n

Hier reicht es aus, $(a [mm] \cdot [/mm] b) [mm] \bmod [/mm] n = ((a [mm] \bmod [/mm] n) [mm] \cdot [/mm] (b [mm] \bmod [/mm] n)) [mm] \bmod [/mm] n$ zu zeigen. Der Rest folgt aus allgemeingueltigen Rechenregeln. Auch hier kannst du wie in a) vorgehen.

LG Felix


Bezug
        
Bezug
Diskrete Strukturen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Mi 20.11.2013
Autor: felixf

Und noch ein Hinweis:

>  a) (a + b) mod n = (a mod n) + (b mod n) mod n

das wurde die Tage bereits hier diskutiert.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]