Diskrete und stetige Verteilun < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:46 Mo 23.01.2006 | Autor: | thales |
Aufgabe | Das Gewicht einer Bevölkerung sei nach N(72,100) verteilt. Wie groß muss der Stichprobenumfang gewählt werden, damit das mittlere Gewicht der Personen mit einer Wahrscheinlichkeit von a) 0.9 ; b) 0.95 ; c) 0,99
mehr als 10kg beträgt? |
Ich glaube mir fehlen die richtigen Formeln und die richtige Ansatzweise um diese Aufgabe zu lösen. Kann mir bitte jemand weiterhelfen?
Danke,
wolfi
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:13 Di 24.01.2006 | Autor: | djmatey |
Hallo,
1) wenn Du eine Zufallsvariable X gegeben hast, die N(a, [mm] \sigma^{2})-verteilt [/mm] ist, gilt für Y=cX+d mit c,d [mm] \in \IR, [/mm] dass Y N(ca+d, [mm] c^{2}\sigma^{2})-verteilt [/mm] ist.
2) wenn Du Zufallsvariablen X und Y gegeben hast, die [mm] N(a_{1}, \sigma_{1}^{2}) [/mm] bzw. [mm] N(a_{2}, \sigma_{2}^{2})-verteilt [/mm] sind, ist X+Y gerade [mm] N(a_{1}+a_{2}, \sigma_{1}^{2}+\sigma_{2}^{2})-verteilt.
[/mm]
Daher gilt für Dein Stichprobenmittel
[mm] \bruch{1}{n} \sum_{i=1}^{n} X_{i} [/mm] ,
dass es [mm] N(72,\bruch{100}{n}) [/mm] verteilt ist!
Die Wahrscheinlichkeit dafür, dass das mittlere Gewicht mehr als 10kg beträgt, ist nun
[mm] P(\bruch{1}{n} \sum_{i=1}^{n} X_{i} \ge [/mm] 10) = [mm] N(72,\bruch{100}{n})(10,\infty)
[/mm]
was nun noch zu berechnen ist.
Dabei wäre noch zu überlegen, ob man wirklich bis [mm] \infty [/mm] integrieren muss, oder ob man eine (vernünftige) Grenze angibt, über die das Gewicht der Personen nie steigt.
Das wäre jedenfalls mein Ansatz - hoffe, es hilft Dir weiter
Liebe Grüße,
Matthias.
|
|
|
|