www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabDiskretisierung einer Gleichun
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Matlab" - Diskretisierung einer Gleichun
Diskretisierung einer Gleichun < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskretisierung einer Gleichun: Matlab
Status: (Frage) beantwortet Status 
Datum: 00:02 Mo 21.06.2010
Autor: ftm2037

Aufgabe
Advections-Diffusionsgleichung:

[mm] u_{t} [/mm] = [mm] a*u_{x} [/mm] + [mm] \nu*u_{xx} [/mm]


Hallo,

wie kann ich in Matlab diese Gleichung im Ort und Zeit Mit finiten Differenzenverfahren diskretisieren?

Viele Grüße



"Ich habe diese Frageh in keinen andren Foren gestellt."

        
Bezug
Diskretisierung einer Gleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 22.06.2010
Autor: max3000

Hallo..

Die Aufgabenbeschreibung ist nicht eindeutig.
Du kannst die auf verschiedene Varianten diskretisieren.
Dazu musst du natürlich die Ableitungen durch Differenzenquotienten ersetzen und dafür gibt es viele verschiedene Möglichkeiten.

Also das [mm] $\partial_t [/mm] u$ kannst du ja ersetzen mit

[mm] $\partial_t u\approx\bruch{u_i^{n+1}-u_i^n}{\Delta t}$ [/mm]
Bei den Ortsableitungen kannst du die Funktionswerte entweder auf dem alten Zeitschritt n auswerten (explizites Verfahren) oder komplett auf dem neuen n+1 (vollimplizites Verfahren) oder zur Hälfte auf dem alten und zur anderen Hälfte auf dem neuen (Crank-Nicolson).

Am einfachsten sind erstmal explizite Verfahren. Die sind zwar sehr unstabil, aber man muss keine Gleichungssysteme lösen.

Also zum Beispiel:
- Erste Ableitung mit zentraler Differenz
[mm] $\partial_x u=\bruch{u_{i+1}^n-u_{i-1}^n}{2\Delta x}$ [/mm]
-Zweite Ableitung mit der Standardapproximation für 2. Ableitungen
[mm] $\partial_{xx} u=\bruch{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}$ [/mm]

Das ganze einsetzen und nach [mm] u^{n+1}_i [/mm] umstellen und in Matlab eintippen.

Die Aufgabe ist nicht komplett. Es fehlen noch Anfangswerte, Randbedingungen und das Gebiet auf dem du rechnen sollst.

Die Randwerte musst du dann natürlich mit in deine explizite Darstellung für das neue [mm] u_i^{n+1} [/mm] einbauen. Darum in Randnähe etwas aufpassen.

Grüße

Max




Bezug
                
Bezug
Diskretisierung einer Gleichun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:40 Mi 23.06.2010
Autor: ftm2037

Danke für die Erklärung! Ich werde das so versuchen und gegebenenfalls mich wieder melden.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]