www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteDivergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Divergenz
Divergenz < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:42 Fr 19.12.2008
Autor: Mathe-Alfi

Aufgabe
Sei a(n) mit n [mm] \in \IN [/mm] eine Folge mit [mm] \limes_{n\rightarrow\infty} [/mm] n*a(n)=a [mm] \not= [/mm] 0.
Zeigen Sie, dass [mm] \summe_{n=1}^{\infty} [/mm] a(n) divergiert.

Hallo !

Ich hab etwas Schwierigkeiten mit dieser Aufgabe. Es steht doch da, dass a(n) einen Grenzwert hat, dann kann die Folge doch nicht divergieren, oder?!

Vielen Dank schonmal!

Lg

        
Bezug
Divergenz: Hinweise
Status: (Antwort) fertig Status 
Datum: 09:49 Fr 19.12.2008
Autor: Roadrunner

Hallo Mathe-Alfi!


Zum einen hat der Ausdruck [mm] $\red{n}*a_$ [/mm] einen Grenzwert (und nicht [mm] $a_n$ [/mm] allein!).

Zum anderen ist es für die Konvergenz von [mm] $\summe a_n$ [/mm] ein, ein notwendiges Kriterium, dass [mm] $a_n$ [/mm] eine Nullfolge ist.


Gruß vom
Roadrunner


Bezug
        
Bezug
Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Fr 19.12.2008
Autor: fred97

Fall 1: a>0.

Es gibt ein N [mm] \in \IN [/mm] mit [mm] na_n [/mm] > a/2 für n>N, also [mm] a_n [/mm] > [mm] \bruch{a}{2}\bruch{1}{n} [/mm] für n>N. Das Minoranten - Krit. liefert nun die Divergenz der Reihe


Fall 2: a<0.

Setze [mm] b_n [/mm] = [mm] -a_n [/mm] und b= -a. [mm] (b_n) [/mm] erfült die Vor. von Fall 1. also ist

[mm] \summe_{n=1}^{\infty}b_n [/mm] divergent und damit auch [mm] \summe_{n=1}^{\infty}a_n [/mm]


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]