www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDivision von n durch p mit Rest r
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Division von n durch p mit Rest r
Division von n durch p mit Rest r < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Division von n durch p mit Rest r: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Sa 15.05.2004
Autor: Frosty

Hallo,

könnte mir jemand bei dieser Aufgabe helfen? Ich habe es schon durch Induktion, Gegenbeweise und direkte Beweise probiert, bin aber zu keinem Ergebnis gekommen.

Sei p Element der natürlichen Zahlen ohne Null. Zeige:
a) Für jedes n Element der natürlichen Zahlen gibt es q, r Element der natürlichen Zahlen mit n = qp + r, wobei r strikt kleiner als p ist.
b) q, r aus a) sind eindeutig bestimmt.

Ich habe schon sehr lange an dieser Aufgabe rumprobiert, kann aber einfach keinen Ansatz finden.

Dankbar für jede Hilfe

        
Bezug
Division von n durch p mit Rest r: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:29 Sa 15.05.2004
Autor: Paulus

Hallo Frosty,

wir tolerieren keine Cross-Postings ohne entsprechenden Hinweis []http://www.onlinemathe.de/read.php?topicid=1000001037&read=1&kat=Studium&PHPSESSID=5f0bd267c0d7b83fae113a3f8843e3e7,

wie beim Absenden der Frage angedeutet.

https://matheraum.de/codex#crossposts

Viele Grüsse


Bezug
                
Bezug
Division von n durch p mit Rest r: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 So 16.05.2004
Autor: Frosty

@marc: Vielen, vielen Dank für Deine Hilfe. Da wäre ich ja nie drauf gekommen. Der entwprechende Hinweis war, dass r auch gleich n - p. Und bei b) hatte ich mir das schon so ähnlich gedacht, konnte es aber nicht so schön zeigen wie Du. Nochmals Danke.

@Paulus: Ich habe diese Seite und onlinemathe.de erst Samstagmorgen entdeckt und hatte Stress, weil meine Mutter mit mir weg wollte. Da konnte ich den "Codex" nicht ganz durchlesen. Wird nicht mehr vorkommen :)

Bezug
        
Bezug
Division von n durch p mit Rest r: Antwort
Status: (Antwort) fertig Status 
Datum: 04:32 So 16.05.2004
Autor: Marc

Hallo Frosty,

willkommen im MatheRaum! :-)

Da mich deine Frage gereizt hat, weil sie so elementarer Natur ist, habe ich mich mal an ihr versucht.

> könnte mir jemand bei dieser Aufgabe helfen? Ich habe es
> schon durch Induktion, Gegenbeweise und direkte Beweise
> probiert, bin aber zu keinem Ergebnis gekommen.
>  
> Sei p Element der natürlichen Zahlen ohne Null. Zeige:
>  a) Für jedes n Element der natürlichen Zahlen gibt es q, r
> Element der natürlichen Zahlen mit n = qp + r, wobei r
> strikt kleiner als p ist.

Ich zeige es per Induktion, und nutze dabei aus, dass eine Zahl n bei der Division durch p denselben Rest läßt wie die Zahl n-p:

Induktionsanfang: Für n=1 ist die Sache klar (man wähle q=0 und r=1).

Induktionsschritt [mm] $n\to [/mm] n+1$: Die Behauptung sei wahr für alle [mm] $k\le [/mm] n$.
1. Fall: $n<p$
Wähle q=0 und r=n.

2. Fall: [mm] $n\ge [/mm] p$
Nach Induktionsvoraussetzung existiert für $n-p$ ein $q'$ und $r'$, so dass
$n-p=q'*p+r'$
[mm] $\gdw [/mm] n=q'*p+r'+p$
[mm] $\gdw n=\underbrace{(q'+1)}_{=:q}*p+\underbrace{r'}_{=:r}$ $\Box$ [/mm]

>  b) q, r aus a) sind eindeutig bestimmt.

Die Eindeutigkeit folgt auf klassische Art und Weise, indem man sich zwei Lösungen ansieht und dann einsieht, dass es dieselbe sein muß:

Sei [mm] $n=q_1*p+r_1$ [/mm] und [mm] $n=q_2*p+r_2$ [/mm] und [mm] $r_1,r_2 Dann ist doch $0 = [mm] n-n=q_1*p+r_1-(q_2*p+r_2)=(q_1-q_2)*p+(r_1-r_2)$, [/mm] also [mm] $(q_1-q_2)*p=-(r_1-r_2)$. [/mm]

Das heißt aber, dass $p$ ein Teiler von [mm] $|-(r_1-r_2)|$ [/mm] ist.
Nun ist aber [mm] $|-(r_1-r_2)|=|r_2-r_1| $p$ kann eine Zahl, die kleiner als $p$ selbst ist, aber nur teilen, wenn diese Zahl $0$ ist, also [mm] $r_2-r_1=0\ \gdw\ r_2=r_1$. [/mm]

Die obige Gleichung [mm] $(q_1-q_2)*p=-(r_1-r_2)$ [/mm] vereinfacht sich so zu [mm] $(q_1-q_2)*p=0$, [/mm] woraus auch [mm] $q_1=q_2$ [/mm] folgt. [mm] $\Box$ [/mm]

> Ich habe schon sehr lange an dieser Aufgabe rumprobiert,
> kann aber einfach keinen Ansatz finden.

Jetzt habe ich leider schon alles verraten, aber die Lösung sollte auch eher für mich sein.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]