www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungen(Doppel-)Dualisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - (Doppel-)Dualisierung
(Doppel-)Dualisierung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Doppel-)Dualisierung: Hilfe zur Aufgabe
Status: (Frage) überfällig Status 
Datum: 18:37 Mi 30.05.2007
Autor: Thomas001

Aufgabe
Eine lineare Abbildung [mm] \phi: [/mm] V [mm] \to [/mm] V induziert eine lineare Abbildung $ [mm] \phi\ [/mm] $* : W* [mm] \to [/mm] V* zwischen den Dualräumen und, mit nochmaliger Dualisierung eine lineare Abbildung $ [mm] \phi\ [/mm] $** : V** [mm] \to [/mm] W**. Zeigen Sie, unter der Benutzung der Einbettung V  [mm] \to [/mm] V** (injektiv) und W [mm] \to [/mm] W** (injektiv) die Abbildung $ [mm] \phi\ [/mm] $** eine Fortsetzung von [mm] \phi [/mm] ist.

Hi! Ich bin neu hier und habe eine Aufgabe an der ich nicht weiterkomme, hoffe hier meine ersehnte Hilfe zu finden. Zu zeigen ist, dass $ [mm] \phi\ [/mm] $** nix anderes ist als [mm] \phi [/mm] selber.

Ich hab mir mal Notizen gemacht, die für mich zu stimmen scheinen, aber irgendwie kann ich einen Knackpunkt nicht überwinden, in dem ich es schaffe die Einbettung der injektiven Funktionen mit einzubauen.

Hier erst mal meine Notizen:

[mm] \phi [/mm] : V$ [mm] \to [/mm] $W

$ [mm] \phi\ [/mm] $* : W*$ [mm] \to [/mm] $V*
W* = [mm] Hom(W,\IR) [/mm]
V* = [mm] Hom(V,\IR) [/mm]
[mm] \Rightarrow f:W\to\IR \mapsto [/mm] g:V [mm] \to\IR [/mm]
[mm] \Rightarrow [/mm] g := f$ [mm] \circ \phi [/mm] $

$ [mm] \phi\ [/mm] $** : V**$ [mm] \to [/mm] $W**
[mm] \alpha [/mm] : V*$ [mm] \to\IR \mapsto \beta [/mm] $ : [mm] W*\to\IR [/mm]

Des Weiteren:
V$ [mm] \to [/mm] $V** (injektiv)
v$ [mm] \mapsto[\alpha [/mm] $ : V*$ [mm] \to\IR [/mm] $]

Sei g [mm] \in [/mm] V*, dann ist g:V [mm] \to\IR [/mm]
$ [mm] \Rightarrow \alpha [/mm] $(g) := g(v)$ [mm] \in\IR [/mm] $

W$ [mm] \to [/mm] $W** (injektiv)
w$ [mm] \mapsto [\beta [/mm] $ : W*$ [mm] \to\IR [/mm] $]

Sei [mm] f\in [/mm] W*, dann ist f: [mm] W\to\IR [/mm]
$ [mm] \Rightarrow \beta [/mm] $(f) := f(w)$ [mm] \in\IR [/mm] $

[mm] \Rightarrow g(v)\to [/mm] f(w) = [mm] V\to [/mm] W


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
(Doppel-)Dualisierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 06.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]