www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungDoppelintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Doppelintegral
Doppelintegral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Sa 01.12.2007
Autor: ebarni

Aufgabe
[mm] \integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}250*cos^{4}y*cos^{3}x [/mm] + [mm] 12,5*sin^{4}y*cosy [/mm] dy dx

Hallo alle!

ich versuche verzweifelt, das Doppelintegral zu lösen.

Hier kann man doch erst Mal die Zahlenwerte rausnehmen:

250+12,5 * [mm] \integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}cos^{4}y*cos^{3}x [/mm] + [mm] sin^{4}y*cosy [/mm] dy dx

Kann man denn dann irgendwie [mm] cos^{2}+sin^{2}=1 [/mm] anwenden? Oder muss man hier wieder geschickt die passenden Additionstheoreme anwenden, um zur Lösung zu kommen?

Für eure Hilfe wäre ich sehr dankbar!

Viele Grüße, Andreas



        
Bezug
Doppelintegral: Korrektur
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 01.12.2007
Autor: Loddar

Hallo Andreas!


So darfst Du hier die Konstanten nicht vor das Integral ziehen! Denn diese Faktoren kommen ja nicht in allen Summanden vor.

Zerlege das Integral zunächst:

[mm] $$\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{250*\cos^4(y)*\cos^3(x) +12.5*\sin^4(y)*\cos(y) \ dy dx}$$ [/mm]
$$= \ [mm] \integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{250*\cos^4(y)*\cos^3(x)\ dy dx}+\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{12.5*\sin^4(y)*\cos(y) \ dy dx}$$ [/mm]
$$= \ [mm] 250*\integral_{-\pi}^{\pi}\cos^3(x)*\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\cos^4(y)\ dy dx}+12.5*\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\sin^4(y)*\cos(y) \ dy dx}$$ [/mm]

Das zweite (innere) Integral lässt sich mit der Subsitution $t \ := \ sin(y)$ bestimmen.

Beim ersten wirst Du wohl über mehrfache partielle Integration vorgehen müssen.


Gruß
Loddar


Bezug
                
Bezug
Doppelintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Sa 01.12.2007
Autor: ebarni

Hallo Loddar, vielen Dank für Deinen schnellen post!

So kompliziert hatte ich es mir echt nicht vorgestellt...

Ich werde es mal versuchen, so wie Du es erklärt hast.

Vielen Dank nochmal für Deine Hilfe!

Grüße nach Berlin!

Andreas



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]