www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDoppelintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Doppelintegral
Doppelintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral: Fläche zwischen zwei Kreisen
Status: (Frage) beantwortet Status 
Datum: 17:00 Fr 17.12.2010
Autor: ApoY2k

Aufgabe
Bestimmen Sie den Inhalt der Fläche außerhalb des Kreises r = 2 und innerhalb der Kardioide r = 2(1 + [mm] cos\phi). [/mm]

Bei dieser Aufgabe erhalte ich ein negatives Ergebnis, das meiner Meinung nach nicht stimmen kann (ich erhalte [mm] \pi-8). [/mm]

Da die Angabe der Funktionen in Polakoordinaten gegeben wurde, wähle ich zur Lösung folgendes Grundintegral (in Polarkoordinaten)

[mm] \integral_{}^{}\integral_{}^{}{\rho d\rho d\phi} [/mm]

Es geht also bei der Aufgabe einzig darum, die richtigen Grenzen einzusetzen. Dabei dachte ich mir: Die Länge [mm] \rho [/mm] läuft ja immer von der inneren Kurve bis zur äußeren, in diesem Fall also von 2 bis [mm] 2(1+cos\phi). [/mm]

[mm] \phi [/mm] selbst lasse ich von den beiden Schnittpunkten der beiden Kurven laufen, also von [mm] \pi/2 [/mm] bis [mm] \pi, [/mm] damit die Fläche nicht negativ wird das ganze noch mal zwei und dann hab ich

[mm] 2\integral_{\pi/2}^{\pi}\integral_{2}^{2(1+cos\phi)}{\rho d\rho d\phi} [/mm]

Dabei kommt aber wie schon erwähnt ein negatives Ergebnis heraus, was ich absolut nicht nachvollziehen kann.

Wo liegt mein Denkfehler? An der Lösung des Integrals kann es nicht liegen, das habe ich mehrmals überprüft, also muss der Fehler irgendwo im Ansatz liegen...

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Fr 17.12.2010
Autor: MathePower

Hallo ApoY2k,

> Bestimmen Sie den Inhalt der Fläche außerhalb des Kreises
> r = 2 und innerhalb der Kardioide r = 2(1 + [mm]cos\phi).[/mm]
>  Bei dieser Aufgabe erhalte ich ein negatives Ergebnis, das
> meiner Meinung nach nicht stimmen kann (ich erhalte
> [mm]\pi-8).[/mm]
>  
> Da die Angabe der Funktionen in Polakoordinaten gegeben
> wurde, wähle ich zur Lösung folgendes Grundintegral (in
> Polarkoordinaten)
>  
> [mm]\integral_{}^{}\integral_{}^{}{\rho d\rho d\phi}[/mm]
>  
> Es geht also bei der Aufgabe einzig darum, die richtigen
> Grenzen einzusetzen. Dabei dachte ich mir: Die Länge [mm]\rho[/mm]
> läuft ja immer von der inneren Kurve bis zur äußeren, in
> diesem Fall also von 2 bis [mm]2(1+cos\phi).[/mm]
>  
> [mm]\phi[/mm] selbst lasse ich von den beiden Schnittpunkten der
> beiden Kurven laufen, also von [mm]\pi/2[/mm] bis [mm]\pi,[/mm] damit die


Die Schnittpunkte der beiden Kurven genügen der  Gleichung

[mm]\cos\left(\phi\right)=0[/mm]

woraus folgt: [mm]\phi=\bruch{2*k+1}{2}*\pi, \ k \in \IZ[/mm]


> Fläche nicht negativ wird das ganze noch mal zwei und dann
> hab ich
>  
> [mm]2\integral_{\pi/2}^{\pi}\integral_{2}^{2(1+cos\phi)}{\rho d\rho d\phi}[/mm]
>  
> Dabei kommt aber wie schon erwähnt ein negatives Ergebnis
> heraus, was ich absolut nicht nachvollziehen kann.


Das negative Ergebnis liegt an der Wahl der Grenzen für [mm]\phi[/mm].


>  
> Wo liegt mein Denkfehler? An der Lösung des Integrals kann
> es nicht liegen, das habe ich mehrmals überprüft, also
> muss der Fehler irgendwo im Ansatz liegen...
>  
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)


Gruss
MathePower

Bezug
                
Bezug
Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Fr 17.12.2010
Autor: ApoY2k

Ja das ist mir klar, nur wie habe ich diese Grenzen zu wählen?

Meine Wahl habe ich mir halbwegs logisch erschlossen anhand dessen, wie die Graphen aussehen, aber wenn diese auf ein negatives Ergebnis führen, wie sind sie dann richtig zu wählen?

Oder ist das Ergebnis richtig und die Tatsache, dass es kleiner Null ist hat garnichts zu sagen, sprich der Betrag sei die Lösung?!

Bezug
                        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Fr 17.12.2010
Autor: MathePower

Hallo ApoY2k,

> Ja das ist mir klar, nur wie habe ich diese Grenzen zu
> wählen?


Von [mm]-\bruch{\pi}{2}[/mm] bis [mm]+\bruch{\pi}{2}[/mm]


>  
> Meine Wahl habe ich mir halbwegs logisch erschlossen anhand
> dessen, wie die Graphen aussehen, aber wenn diese auf ein
> negatives Ergebnis führen, wie sind sie dann richtig zu
> wählen?


Siehe oben,


>  
> Oder ist das Ergebnis richtig und die Tatsache, dass es
> kleiner Null ist hat garnichts zu sagen, sprich der Betrag
> sei die Lösung?!


Nein, das Ergebnis ist nicht richtig.

Und ja, der Betrag der Lösung ist maßgebend.


Gruss
MathePower

Bezug
                                
Bezug
Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Fr 17.12.2010
Autor: ApoY2k

Hm okay, versteh ich kein bisschen, woher diese Grenzen kommen. Nach welchen Kriterien geht man bei diesem Beispiel vor?

Mit Doppelintegralen an sich hab ich keine Probleme, aber sobald das alles in Polarkoordinaten übergeht, verschwindet meine Vorstellungskraft. Woher sehe ich, welche Grenzen gelten?

Geht das aus der Formel vor, die du oben beschrieben hast? Und wenn ja, wie?


Sorry wenn ich so nachbohre, aber ich muss das auch verstehen können :-/

Bezug
                                        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Fr 17.12.2010
Autor: MathePower

Hallo ApoY2k,


> Hm okay, versteh ich kein bisschen, woher diese Grenzen
> kommen. Nach welchen Kriterien geht man bei diesem Beispiel
> vor?
>  
> Mit Doppelintegralen an sich hab ich keine Probleme, aber
> sobald das alles in Polarkoordinaten übergeht,
> verschwindet meine Vorstellungskraft. Woher sehe ich,
> welche Grenzen gelten?


Nun, für den Schnittpunkt der beiden Kurven gilt:

[mm]2*\left(1+\cos\left(\phi\right)\right)*\pmat{\cos\left(\phi\right) \\ \sin\left(\phi\right)}=2*\pmat{\cos\left(\phi\right) \\ \sin\left(\phi\right)}[/mm]

Bzw. es müssen die beiden Gleichungen gelten:

[mm]2*\cos\left(\phi\right)* \cos\left(\phi\right)=0[/mm]

[mm]2*\cos\left(\phi\right)* \sin\left(\phi\right)=0[/mm]

Dies geht einher mit [mm]\cos\left(\phi\right)=0[/mm]


>  
> Geht das aus der Formel vor, die du oben beschrieben hast?
> Und wenn ja, wie?
>  


Siehe oben.


>
> Sorry wenn ich so nachbohre, aber ich muss das auch
> verstehen können :-/


Sicher.


Gruss
MathePower

Bezug
                                                
Bezug
Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Fr 17.12.2010
Autor: ApoY2k

Okay, aber [mm] cos(\phi) [/mm] = 0 hat doch viele Lösungen? Wie du oben schon geschrieben hast, gilt das für

[mm] \phi [/mm] = [mm] \bruch{2*k+1}{2}*\pi [/mm]

Heißt das, dass ich mir k frei wählen kann?

Also könnte ich das Doppelintegral für [mm] \phi [/mm] auch von (k = 1, 2) => [mm] \phi [/mm] = [mm] 3/2\pi...5/2\pi [/mm] laufen lassen?

Blödes Beispiel, aber das ist genau mein Problem - [mm] \phi [/mm] kann vieles sein, aber was habe ich zu wählen?

Die Berechnung des Schnittpunktes über Gleichsetzen hatte ich genau so, aber ich habe daraus nicht schließen können, was genau denn jetzt die Grenzen sind.

Bezug
                                                        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Fr 17.12.2010
Autor: MathePower

Hallo ApoY2k,

> Okay, aber [mm]cos(\phi)[/mm] = 0 hat doch viele Lösungen? Wie du
> oben schon geschrieben hast, gilt das für
>  
> [mm]\phi[/mm] = [mm]\bruch{2*k+1}{2}*\pi[/mm]
>  
> Heißt das, dass ich mir k frei wählen kann?
>  
> Also könnte ich das Doppelintegral für [mm]\phi[/mm] auch von (k =
> 1, 2) => [mm]\phi[/mm] = [mm]3/2\pi...5/2\pi[/mm] laufen lassen?


Ja, Du musst nur zwei aufeinanderfolgende Nullstellen wählen.


>  
> Blödes Beispiel, aber das ist genau mein Problem - [mm]\phi[/mm]
> kann vieles sein, aber was habe ich zu wählen?


In der Regel wählt man die Nullstellen
in  [mm]\left[-\pi,\pi\right][/mm] bzw. [mm]\left[0,2*\pi\right][/mm]


>  
> Die Berechnung des Schnittpunktes über Gleichsetzen hatte
> ich genau so, aber ich habe daraus nicht schließen
> können, was genau denn jetzt die Grenzen sind.


Ok.


Gruss
MathePower

Bezug
                                                                
Bezug
Doppelintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Fr 17.12.2010
Autor: ApoY2k


> Ja, Du musst nur zwei aufeinanderfolgende Nullstellen
> wählen.

Genau das war der Satz den ich hören wollte. Ich danke dir vielmals für deine Geduld mit mir. Jetzt hat sich so einiges gelüftet an Nebel :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]