www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDoppelintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Doppelintegral
Doppelintegral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral: Wie sind die Grenzen? LSG-Weg
Status: (Frage) beantwortet Status 
Datum: 15:46 Di 11.10.2005
Autor: shelter

Hallo

Ich habe folgendes Integral:

[mm] \integral_{G}^{} \integral_{}^{} [/mm] { [mm] \bruch{y}{ \wurzel{ x^{2}+ y^{2}}} [/mm] dG}

Das ausrechnen wäre nicht so das Problem eher wie ich die Grenzen annehmen sollte. Im Anhang ist eine Zeichnung der Funktion


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Di 11.10.2005
Autor: andreas

hi

kann es sein, dass du bei der $y$-achse die $3$ und die $5$ vertauscht hast? ich nehme das jetzt einfach mal an. dann bietet es sich hier an, mittels der transformationsformel (entspricht mehrdimensionaler substitution - such einfach mal danach in deinen unterlagen oder im internet) auf polarkoordinaten zu wechseln und zwar:

[m] x = r \cos \varphi [/m]
[m] y = r \sin \varphi [/m]

überlege dir mal was für wertebereiche sich nun für $r$ und [mm] $\varphi$ [/mm] anbietet und probiere das integral zu berechnen.

wenn du nicht weiterkommst oder dein ergbenis kontrolieren lassen willst kannst du dich ja gerne nochmal melden.

grüße
andreas

Bezug
                
Bezug
Doppelintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Di 11.10.2005
Autor: shelter

Hallo

sorry ja da hab ich die Grenzen auf der y Achse verdreht. ;(

Danke andreas

Bezug
                        
Bezug
Doppelintegral: Karthesische Koordinaten
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 11.10.2005
Autor: shelter

Kann es sein das die Funktion als Hilfe für die Lösung in Polarkoordinaten sein soll?
Wie sieht es denn im Kartesischen aus? ich habe da für das erste Integral 0 und 5 angenommen und für das 2. integaral die Grenzen für den Kreis (kleiner Kreis unten und großer oben) Und im Kreis steht nur eine 1 zum integrieren.

Ist das so richtig?

Bezug
                                
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 Mi 12.10.2005
Autor: andreas

hi

> Kann es sein das die Funktion als Hilfe für die Lösung in
> Polarkoordinaten sein soll?

also ich nehme mal an, dass die ursprüngliche funktion in kartesischen koordinaten $(x, y)$ gegeben war und das gebiet $G  = [mm] \{ (x, y) \in \mathbb{R}^2 : \sqrt{3} \leq x^2 + y^2 \leq \sqrt{5}\; \wedge \; x \geq 0 \; \wedge \; y \geq 0 \}$ [/mm] auch in kartesischen koordinaten gegeben war. mittels der in der letzten antwort von mir angegebenen substition könnte man das dann in polarkorrdinaten umrechnen. man muss eben nur aufpassen, das man die parameter $r$ und [mm] $\varphi$ [/mm] richtig einschränkt, dass $x$ und $y$ wieder genau $G$ durchläufen.

>  Wie sieht es denn im Kartesischen aus? ich habe da für das
> erste Integral 0 und 5 angenommen und für das 2. integaral
> die Grenzen für den Kreis (kleiner Kreis unten und großer
> oben) Und im Kreis steht nur eine 1 zum integrieren.

was du hier schreibst ist mir ehrlich gesagt völlig unklar.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]