www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationDoppelintegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Doppelintegrale
Doppelintegrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 10.09.2018
Autor: hase-hh

Aufgabe
Die Funktion f(x,y) = y

ist über dem Dreieck mit den Eckpunkten A (2 / 2), B (6 / 2) und C (4 / 4) als Integrationsbereich zu integrieren.

Moin Moin,

ich kann bis zu einem gewissen Punkt nachvollziehen, wie die Lösung zustande gekommen ist, aber ich verstehe nicht

1. was genau mit diesem Integral ausgerechnet worden ist???

Der Flächeninhalt kann es nicht sein, da Grundseite mal Höhe durch zwei hier 4*2/2 = 4 FE ergeben müsste?!?  


In der Lösung wird

zunächst als äußeres I-Intervall der y-Achsenabschnitt [2;4] gewählt.

Dann werden die Geradengleichungen

y = 8 - x

y = x    augestellt und nach x umgeformt.

D.h.

[mm] x_o [/mm] = 8 - y

[mm] x_u [/mm] = y .



Daraus ergibt sich der Ansatz...  

V = [mm] \integral_{y = 2}^{4} \integral_{x = y}^{x = 8 -y}{ y dx dy} [/mm]  


Dann wird die innere Stammfunktion gebildet, und berechnet; danach wird die äußere Stammfunktion gebildet und zum Schluß der Wert berechnet.

V = [mm] \bruch{32}{3} [/mm]


Dies ist aber sicher nicht der Flächeninhalt.


1. Kann mir jemand vielleicht ein Bild geben, was da berechnet wird; wie das zusammenhängt???


2. Warum kann ich nicht einfach den x-Bereich von [2;6] für das innere Integral zugrunde legen???


Danke und Gruß!!












        
Bezug
Doppelintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mo 10.09.2018
Autor: HJKweseleit


>
> 1. Kann mir jemand vielleicht ein Bild geben, was da
> berechnet wird; wie das zusammenhängt???
>

Das Integral berechnet das Volumen eines begrenzten 3-dimensionalen Körpers.

Stell dir das 2-dim. x-y-Koordinatensystem als ein Blatt Papier vor, das auf dem Tisch liegt. Nach oben geht nun eine weitere Achse, die z-Achse. Nun "schwebt" über (oder auch unterhalb) dem Tisch eine Art Dach, das aus einer ebenen oder gewölbten Fläche besteht (Kuppel, Dach des Olympiastadions in München, Hausdach,...). Zu jedem Punkt (x|y) kannst du nun einen z-Wert als Höhe des Daches über genau diesem Punkt angeben. Damit wird z eine Funktion der Punkte (x,y). in unserem Beispiel ist f(x,y)=y, was bedeutet, dass z nur von y abhängt, also bei festem y für alle z gleich ist.

Auf der x-Achse ist y und damit z=0, das Dach liegt also auf der x-Achse am Boden auf. Auf der Parallelen mit y=1 zur x-Achse hat das Dach überall dieselbe Höhe 1, über der Parallele y=2 die Höhe 2 ... und für y=-1 geht es in der Höhe -1 unter der Tischfläche weiter. Wenn du also vor dem Tisch stehst, die x-Achse von links nach rechts und damit die y-Achse von vorn nach hinten verläuft, würde das Dach in Blick-(=y-)Richtung vor dir genau steil mit 45 ° hochlaufen.

Nun krabbelst du unter das Dach und zeichnest in das Koordinatensystem das angegebene Dreieck ein. Auf den Dreieckskanten ziehst du eine (unendlich dünne) Mauer nach oben bis zum Dach. Die Mauern, das Dach und die x-y-Ebene schließen dann einen Hohlraum ein. Und dessen Volumen hast du berechnet.

[Dateianhang nicht öffentlich]

>
> 2. Warum kann ich nicht einfach den x-Bereich von [2;6]
> für das innere Integral zugrunde legen???

V = $ [mm] \integral_{y = 2}^{4} \integral_{x = y}^{x = 8 -y}{ y dx dy} [/mm] $
>

Um das Volumen zu berechnen, stellst du dir dieses nun als lauter dünne Scheiben vor, die senkrecht auf der Grundfläche stehen. Die schwarze Umrandung einer solchen Scheibe habe ich dir eingezeichnet.

Das äußere Integral läuft nun von vorn nach hinten in y-Richtung und erfasst alle solche Scheiben. Dabei läuft y von 2 bis 4, von der Vorderseite des Dreiecks zum hinteren Eckpunkt. Der jeweilige x-Wert kann aber nicht jedesmal von 2 bis 6 laufen, denn weiter hinten wird die Unterkante der Scheibe ja immer schmaler. Er läuft (im inneren Integral) jeweils von der linken zur rechten Dreiecksseite, also von x=y bis x=8-y.

Für jeden erfassten Punkt wird nun die Höhe z (hier: =y, normalerweise aber komplizierter) mit einer kleine Fläche der Breite dx und der Länge dy multipliziert, so dass du ein winziges Volumenteilchen berechnest (stell die eine Spagetti bis zum Dach vor). Die alle aufsummiert ergeben dann das Gesamtvolumen.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Doppelintegrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:05 Di 11.09.2018
Autor: hase-hh

Vielen lieben Dank für die ausführliche Antwort !!

Ich werde mir das Ganze morgen mal zu Gemüte führen...

LG



Bezug
                
Bezug
Doppelintegrale: Tippfehler?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:51 Di 11.09.2018
Autor: chrisno

" in unserem Beispiel ist f(x,y)=y, was bedeutet, dass z nur von y abhängt, also bei festem y für alle z gleich ist. "
Ich nehme an, dass es heißen soll:  .. also bei festem y für alle x gleich ist.

Bezug
                        
Bezug
Doppelintegrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 Di 11.09.2018
Autor: HJKweseleit

Ja, völlig richtig, danke für die Korrektur.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]