www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDoppelpunkte/singuläre Stellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Doppelpunkte/singuläre Stellen
Doppelpunkte/singuläre Stellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelpunkte/singuläre Stellen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:11 Fr 27.05.2005
Autor: bobby

Hallo!

Ich habe ein Problem mit folgender Aufgabe, vielleicht zu einfach um drauf zu kommen, mir fällt jedenfalls nix dazu ein.

Bweisen Sie, dass eine Kurve im Falle einer expliziten Parametrisierung weder Doppelpunkte noch singuläre Stellen hat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Doppelpunkte/singuläre Stellen: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:24 Fr 27.05.2005
Autor: MathePower

Hallo,

schreibe die Funktion y = f(x) so:

[mm]g(x,\;y)\;: = \;y\; - \;f(x)[/mm]

Dann ist eine implizite Funktion g(x, y) = 0 gegeben. Folglich kann die dann auf singuläre Punkte untersucht werden:

Bedingungsgleichungen hierfür sind:

[mm]\begin{array}{l} g(x,\;y)\; = \;0 \\ g_{x} \; = \;0 \\ g_{y} \; = \;0 \\ \end{array}[/mm]

Eine solche implizite Funktion hat einen Doppelpunkt, wenn [mm] g_{xy}^{2} \; > \;g_{xx} \;g_{yy} [/mm]

Natürlich muß ein singulärer Punkt vorliegen.

Gruß
MathePower

Bezug
                
Bezug
Doppelpunkte/singuläre Stellen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:19 Mi 01.06.2005
Autor: bobby

Ok, das ist mir jetzt klar.

Aber ich versteh nicht ganz, die Funktion, die du geschrieben hast erfüllt doch genau die Eigenschaften für die singulären Stellen, bei den Doppelpunkten käme ich auf 0=0, also demnach hätte sie keine, aber die Funktion die gesucht ist soll doch weder Doppepunkte noch singuläre Stellen haben, die die du geschrieben hast hat doch aber Singuläre Stellen!?????!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Doppelpunkte/singuläre Stellen: Singulären Stellen
Status: (Antwort) fertig Status 
Datum: 15:23 Do 02.06.2005
Autor: MathePower

Hallo bobby,

> Aber ich versteh nicht ganz, die Funktion, die du
> geschrieben hast erfüllt doch genau die Eigenschaften für
> die singulären Stellen, bei den Doppelpunkten käme ich auf
> 0=0, also demnach hätte sie keine, aber die Funktion die
> gesucht ist soll doch weder Doppepunkte noch singuläre
> Stellen haben, die die du geschrieben hast hat doch aber
> Singuläre Stellen!?????!

Die so definierte Funktion, hat keine singulären Stellen.

Es ist  [mm]g\left( {x,\;y} \right)\; = \;0[/mm] erfüllt.

Die weiteren Bedingungen [mm]g_{x} (x,\;y)\; = \;g_{y} (x,\;y)\; = \;0[/mm] sind aber nicht erfüllt.

[mm]\begin{gathered} g_{x} (x,\;y)\; = \;\frac{{\delta g(x,\;y)}} {{\delta x}}\; = \; - \;f'\left( x \right) \hfill \\ g_{y} (x,\;y)\; = \;\frac{{\delta g(x,\;y)}} {{\delta y}}\; = \;1 \hfill \\ \end{gathered} [/mm]

Damit ein Doppelpunkt vorliegen kann, müssen die Bedingungsgleichungen [mm]g\left( {x,\;y} \right)\; = \;0[/mm] und [mm]g_{x} (x,\;y)\; = \;g_{y} (x,\;y)\; = \;0[/mm] erfüllt sein. Die Bedingungsgleichungen sind hier aber nicht erfüllt. Die Funktion [mm]g\left( {x,\;y} \right)\; = \;y\; - \;f(x)\; = \;0[/mm] hat also keine singulären Stellen. Demzufolge hat sie auch keine Doppelpunkte, da für das Vorliegen von Doppelpunkten ein singulärer Punkt vorhanden sein muß.

Gruß
MathePower






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]