www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDoppelreihe umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Doppelreihe umformen
Doppelreihe umformen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelreihe umformen: Umformung
Status: (Frage) überfällig Status 
Datum: 11:47 Mi 31.08.2011
Autor: Balendilin

Hallo,

ich versuche die ganze Zeit folgende Doppelreihe umzuformen:

Sei $G$ eine Menge und [mm] $\{g_i\}$ [/mm] eine darin dichte und abzählbare Teilmenge. Seien außerdem [mm] $a_j>0,a_j\in\IR,\sum\limits_{j=1}^\inftya_J=1$. [/mm] $h$ sei eine komplexwertige auf $G$ gleichmäßig stetige Funktion (ich glaub, das braucht man hier aber nicht).
Umformen möchte ich:

[mm] $\sum\limits_{j=1}^\infty a_j\sum\limits_{k=1}^\infty [/mm] a_kh(g_kg_jg)$

und zwar soll irgendwas von dieser Form rauskommen:

[mm] $\sum\limits_{j=1}^\infty \beta_j h(g_j'g)$ [/mm]   mit [mm] $\beta_j>0,\beta_j\in\IR,\sum\limits_{j=1}^\infty\beta_j=1$ [/mm]

(Was genau [mm] $g_j'$ [/mm] ist, weiß ich nicht. Ich weiß also nicht, ob ich bekommen muss, dass [mm] \{g_j'\} [/mm] dicht liegt.)
Mein Problem dabei ist vor allem, dass ich dieses h(g_kg_jg) nicht umzuformen weiß. Könnte ich das irgendwie aus der zweiten Summe rausziehen, dann hätte ich mithilfe des Doppelreihensatzes ja direkt mein [mm] \beta_j [/mm] gefunden, nämlich als [mm] a_j\sum\limits_{k=1}^\infty a_k. [/mm] Aber das bekomme ich eben nicht hin :(

Kann mir da irgendjemand dabei helfen? Danke! :)


-------------------------------------------
-------------------------------------------

Ich habe das Problem oben jetzt gelöst:

Da [mm] \{g_j\} [/mm] eine abzählbare Menge ist, ist auch die Menge [mm] \{g_kg_j\} [/mm] abzählbar. Sei [mm] \{g_j'\} [/mm] die Abzählung dieser Menge.
Da [mm] \{a_j\} [/mm] abzählbar ist, ist auch die Menge [mm] \{a_ja_k\} [/mm] abzählbar. Sei [mm] \{\beta_j\} [/mm] die Abzählung dieser Menge. Allerdings bin ich mir hier noch nicht sicher, ob auch [mm] \sum\beta_j=1, [/mm] ich vermute aber schon.
Jetzt muss ich die Indizes und die Abzählungen bloß noch so vertauschen (sortieren), dass die Reihen übereinstimmen (die Summanden sind ja identisch).


Allerdings habe ich festgestellt, dass damit mein eigentliches Problem gar nicht gelöst ist. Eigentlich muss ich nämlich

[mm] $\sum\limits_{j=1}a_jh(g_jg)+\sum\limits_{j=1}^\infty a_j\sum\limits_{k=1}^\infty [/mm] a_kh(g_kg_jg)$

(mit evtl. noch mehr solcher Summanden) auf die Form

[mm] $\sum\limits_{j=1}^\infty \beta_j h(g_j'g)$ [/mm]   mit [mm] $\beta_j>0,\beta_j\in\IR,\sum\limits_{j=1}^\infty\beta_j=1$ [/mm]

bringen.
Ich sehe da leider noch nicht, wie ich das mit dem oben erreichten schaffen kann. Hat da vielleicht jemand eine Idee, einen Hinweis für mich? Danke! :)

        
Bezug
Doppelreihe umformen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 02.09.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]