www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeDosenvolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Dosenvolumen
Dosenvolumen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dosenvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 01.11.2008
Autor: Fuchsschwanz

Aufgabe
Wie muss sich bei einer Dose (Zylinder mit Deckel) die Höhe zum Durchmesser verhalten, damit bei bekanntem Volumen möglichst wenig Blech verbraucht wird?

Hallo!

Ich würde obige Aufgabe jetzt so lösen, dass ich nachher halt die Höhe habe (NB in Hb, dann hab ich ne Zielfunkion dann ableiten,Extrema bestimmen), bei der das die Oberfläche am kleinsten ist, die steht dann allerdings nur in abhängigkeit von V...wie bekomme ich denn dort eine Abhängigkeit zu d?

Danke

        
Bezug
Dosenvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 01.11.2008
Autor: Steffi21

Hallo,

Nebenbedingung:
[mm] V=\pi*r^{2}*h [/mm] somit [mm] h=\bruch{V}{\pi*r^{2}} [/mm]

Hauptbedingung:
[mm] A(h,r)=2*\pi*r^{2}+\pi*r*h [/mm]

[mm] A(r)=2*\pi*r^{2}+\pi*r*\bruch{V}{\pi*r^{2}} [/mm]

[mm] A(r)=2*\pi*r^{2}+\bruch{2*V}{r} [/mm]

jetzt mache deine Extremwertbetrachtung, r= ...

dann haben wir doch noch [mm] h=\bruch{V}{\pi*r^{2}} [/mm]

Steffi

Bezug
        
Bezug
Dosenvolumen: Beispiel aus der Praxis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Sa 01.11.2008
Autor: mmhkt

Guten Tag,
ergänzend zu Steffis Erläuterungen kannst Du auf []dieser Seite ein Praxisbeispiel anschauen.

Schönen Gruß
mmhkt

Bezug
        
Bezug
Dosenvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 So 02.11.2008
Autor: Fuchsschwanz

hmmm..aber ich bekomme doch mit der Rechnung kein Verhältnis zwischen h und d, sondern ich habe dann d und kann daraus h i ABhängigkeit von V lösen, oder?

Bezug
                
Bezug
Dosenvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 02.11.2008
Autor: moody

Ich würde jetzt einfach mal sagen man guckt sich an wann die Funktion die die Fläche in Abhängigkeit von r beschreibt, minimal wird.

Also von [Dateianhang nicht öffentlich] das Minimum in Abhängigkeit von r berechnen.

Dann setzt man das r in die andere Funktio (mit h und V) ein und guckt für welches h V maximal wird.

[Dateianhang nicht öffentlich] davon, das Maximum in Abhängigkeit von h berechnen und vorher das r einsetzen, was du vorher errechnet hast.

So würde ich das jetzt machen. Vielleicht überprüft das ja noch jemand bevor du das so machst.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Dosenvolumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:47 Mo 03.11.2008
Autor: Steffi21

Hallo,

ich habe mir als Beispiel V vorgegeben, mit [mm] r=(\bruch{V}{2*\pi})^{\bruch{1}{3}} [/mm] dann r berechnet, dann h, ich erhalte h:r=2:1, gleichbedeutend mit h:d=1:1, ich überlege mir jetzt, wie man es allgemein zeigen kann,
allgemein gezeigt:

[mm] h=\bruch{V}{\pi*r^{2}} [/mm]

[mm] r=(\bruch{V}{2*\pi})^{\bruch{1}{3}} [/mm] einsetzen

[mm] h=\bruch{V}{\pi*(\bruch{V}{2*\pi})^{\bruch{2}{3}}} [/mm]

[mm] h=\bruch{V^{\bruch{1}{3}}*2^{\bruch{2}{3}}}{\pi^{\bruch{1}{3}}} [/mm]

[mm] h=\bruch{V^{\bruch{1}{3}}*2^{1}}{\pi^{\bruch{1}{3}}*2^{\bruch{1}{3}}} [/mm]

[mm] h=2*(\bruch{V}{2*\pi})^{\bruch{1}{3}} [/mm]

h=2*r bzw.

h=d

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]