www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDrehung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Drehung
Drehung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 26.06.2013
Autor: Redenwirmaldarueber

Aufgabe
Koordinatensystem: [mm]b_1= \vektor{1\\1\\-2}[/mm]   [mm]b_2= \vektor{1\\1\\1}[/mm]   [mm]b_3= \vektor{1\\-1\\0}[/mm] Drehachse: [mm]b_2[/mm]

Geben Sie drei Matrizen an, deren Produkt eine Drehung im [mm]\IR^3[/mm] zn deb Winkel [mm]45 ^\circ[/mm] mit der Drehachse [mm]b_2[/mm] beschreibt. Benutzen Sie als Ausgangspunkt ihrer Überlegungen die Basis [mm]b_1,b_2,b_3[/mm].



Hallo,
könnte jemand mal Korregieren und ggf. Tipps abgeben?

Meine bisherige Lösung:

Das Koordinatensystem ist schoneinmal Orthogonal.
Ich soll zu dem Problem ein passendes Koordinatensystem bauen, die gewünschte Operation ausführen und wieder umrechenen. So habe ich das auf jeden Fall verstanden.

Also neues Koordiantensystem! Da wie oben geschrieben Orthogonal muss ich es nur noch Normalisieren.

[mm]k_1 = \frac{1}{ \left\vert b_1 \right\vert}b_1 = \frac{1}{ \left\vert \vektor{1 \\ 1\\-2} \right\vert} \vektor{1 \\ 1\\} = \frac{1}{ \sqrt{6} } \vektor{1 \\ 1\\-2}[/mm]

[mm]k_2 = \frac{1}{ \left\vert b_3 \right\vert}b_3 = \frac{1}{ \left\vert \vektor{1 \\ -1\\0} \right\vert} \vektor{1 \\ -1\\0} = \frac{1}{ \sqrt{2} } \vektor{1 \\ -1\\0}[/mm]
[mm]k_3 = \frac{1}{ \left\vert b_2 \right\vert}b_2 = \frac{1}{ \left\vert \vektor{1 \\ 1\\1} \right\vert} \vektor{1 \\ 1\\1} = \frac{1}{ \sqrt{3} } \vektor{1 \\ 1\\1}[/mm]

Da Orthogonal ist die Inverse = die Transformierte Matrix.

[mm]B= k_1,k_2,k_3 = \pmat{ \frac{1}{\sqrt{6}} & \frac{1} {\sqrt{2}} & \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}} [/mm]  [mm]B^t= \pmat{ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1} {\sqrt{2}} & -\frac{1} {\sqrt{2}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}& \frac{1}{\sqrt{3}} } [/mm]
 [mm]G = \pmat{ cos\alpha & -sin\alpha & 0\\sin\alpha & cos\alpha & 0\\0&0&1} [/mm]

Damit wären die geforderten drei Matrizen doch gegeben, oder?

[mm]B*G*B^t[/mm]

Oder habe ich da etwas falsch verstanden?
Jetzt noch eine Frage! Wie kann ich die Richtung der Drehung beeinflussen?

Gruß redenwirmaldarüber

 

        
Bezug
Drehung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Do 27.06.2013
Autor: leduart

Hallo
ich sehe keinen Fehler
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]