www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelDrei Winkel und Längen gegeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Drei Winkel und Längen gegeben
Drei Winkel und Längen gegeben < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drei Winkel und Längen gegeben: Resultierende Bestimmen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:51 So 01.11.2009
Autor: oli_k

Hallo,

Frage aus der Mechanik (räumliches zentrales Kraftsystem).

Gegeben:
F1=2kN, F2=3kN, F3=4kN

Dazu die Winkel:
(F1,F2)=120°, (F2,F3)=90°, (F3,F1)=60°

Gesucht:
Länge der Resultierenden und jeweils die Winkel

Ich habe nun F1 als x-Achse gesetzt und anschließend F2 und F3 als Vektoren bestimmt, das war relativ aufwendig.

Ich habe mir außerdem Gedanken gemacht, dass die Resultierende zweier Vektoren im ebenen System ja in die eine Richtung F1+F2*cos(alpha), in die andere Richtung F2*sin(alpha) ist, aber auch damit kam ich nicht so recht weiter.

Gibt es da eine geschicktere Methode, ranzugehen? Habe einiges versucht, im Prinzip brauche ich ja die Summe der Kräfte in x-, y- und z-Richtung, allerdings habe ich ja keine konkreten Kraftvektoren gegeben.

Vielen Dank!

        
Bezug
Drei Winkel und Längen gegeben: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 01.11.2009
Autor: leduart

Hallo
Ich hätte erst mal die 2 rechtwinkligen in die x-y achsen gelegt, Laenge und Winkel der daraus  Resultierenden dann einfach.  dann kennst du x und z Komponente von F1 und kanst aus dem Betrag auf die z Komp. schliessen.
obs noch einfacher geht weiss ich nicht.
Gruss leduart

Bezug
                
Bezug
Drei Winkel und Längen gegeben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:28 So 01.11.2009
Autor: oli_k

Das habe ich nicht ganz verstanden.

Also F2 in y-Achse, F3 in x-Achse, dann erhalte ich F2=(0|3|0) und F3=(4|0|0).

Wie komme ich von hier am effektivsten an den F1-Vektor? Ein Gleichungssystem mit den beiden Skalarprodukten (2 Gleichungen, 3 Unbekannte -> Vielfaches von einem Vektor -> durch seinen Betrag teilen -> mit 2kN multiplizieren) scheint mir zu kompliziert bzw. zu umständlich.

Oder?

Bezug
                        
Bezug
Drei Winkel und Längen gegeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 So 01.11.2009
Autor: oli_k

Als Lösung des LGS erhalte ich für die Komponenten a|b|c von F1 einfach nur a=b=0. Das kann es irgendwie nicht sein. Als ich die beiden Vektoren mit 120 Grad in die x-y-Ebene gelegt hatte, war es über Skalarprodukt=0 einfacher, den verbleibenden Vektor zu berechnen...

Wie komm ich hier nun weiter?


EDIT:
Huch, eine Gleichung vergessen. Für c erhalte ich Wurzel(2)*b, also alles ok => t*(1|-1|-1,41)

Jetzt noch einen Faktor davor, dass der Betrag 2 ist (in dem Fall ist t=1) und ich habe alle drei Vektoren, korrekt? Von dort an kann ich ja alles problemlos rechnen.

Hättest du das auch so gemacht?

Bezug
                                
Bezug
Drei Winkel und Längen gegeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 So 01.11.2009
Autor: leduart

Hallo
ich versteh nicht ganz , wie du zu 3 gleichungen kommst. die xKomponente kriegst du, weil du den Winkel und die Betraege kennst, ebenso die y Komponente. wo sind da gleichungen mit unbekanntenes sei denn du nennst [mm] F1_x=cos(F1,F2)/|F2| [/mm] ne Gleichung mit Unbekannten? (F2 in x-Richtung) entsprechend [mm] F1_y [/mm]
dann nur noch aus dem Betrag [mm] F1_z. [/mm]
Wie kommst du auf deine Werte?
Gruss leduart


Bezug
                                        
Bezug
Drei Winkel und Längen gegeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 So 01.11.2009
Autor: oli_k

Verstehe deinen Weg, auf die Vektorform zu kommen, leider immer noch nicht. Lassen wir doch die Längen erstmal außer Acht, wichtig sind zunächst die Richtungen. Dann kann man nachher immer noch normieren und mal nehmen.

Mein Weg:

Sei F1=(a|b|c)
Dann ist [mm] cos(120°)=\bruch{(a|b|c)*(0|3|0)}{3\wurzel{a^2+b^2+c^2}} [/mm] und somit [mm] b=-0,5\wurzel{a^2+b^2+c^2} [/mm] (I)
Analog dazu [mm] a=0,5\wurzel{a^2+b^2+c^2} [/mm] (II)
I+II: a+b=0
Einsetzen in I: [mm] a=0,5\wurzel{a^2+(-a)^2+c^2} [/mm]
Liefert: [mm] c=\pm\wurzel{2}a [/mm]

Somit Vektor von F1: [mm] t*(1|-1|\pm\wurzel{2}) [/mm]

Betrag ist zufälligerweise schon 2, also t=1.

Damit habe ich [mm] F1=(1|-1|\pm\wurzel{2}) [/mm] F2=(0|3|0), F3=(4|0|0) und kann damit alle Berechnungen vornehmen.

Danke!

Bezug
                                                
Bezug
Drei Winkel und Längen gegeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 So 01.11.2009
Autor: leduart

Hallo
alles richtig , ich hät nur immer |F1| gleich eingesetzt statt de Wurzel.
ob du um + 120° oder -120° drehst gibt dieselbe Komponente.
Gruss leduart

Bezug
                                                
Bezug
Drei Winkel und Längen gegeben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:59 So 01.11.2009
Autor: oli_k

Noch eine konkrete Frage zu meiner Rechnung.

Ich habe dort ja t=1 gesetzt, denkbar wäre aber auch t=-1. Das gleiche gilt, wenn ich statt nach a nach b auflöse, auch dann habe ich alles mit dem Faktor -1. Dann käme weiterhin der richtige Betrag raus, die Winkel wären nun aber falsch. Wie schränke ich das ein, ohne immer die Probe machen zu müssen?

Muss ich schreiben "Suche ein [mm] \pm{t}, [/mm] für das Betrag=2 gilt" und dann ein "Probe, ob +t oder -t"?

Oli

Bezug
                                                        
Bezug
Drei Winkel und Längen gegeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 So 01.11.2009
Autor: oli_k

Das Problem liegt darin, dass das negative Vorzeichen vom Ergebnis des Cosinus nachher wegquadriert wird. Ob ich 60 oder 120 Grad voraussetze, am Ende erhalte ich immer das gleiche Ergebnis (logisch, da in der "echten" Vektorrechnung die Gerade ja unendlich lang ist und somit beide Winkel existieren).

Lässt sich also ohne Probe nichts machen?

Bezug
                                                        
Bezug
Drei Winkel und Längen gegeben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 03.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Drei Winkel und Längen gegeben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 03.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]