www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenDreieck Schwerpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Abbildungen und Matrizen" - Dreieck Schwerpunkt
Dreieck Schwerpunkt < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 15.03.2009
Autor: Swifty

Aufgabe
Zeigen Sie allgemein, dass der Schwerpunkt S eines Dreiecks ABC Fixpunkt der affinen Abbildung ist, die A auf B, B auf C und C auf A abbildet.

Hallo!
Bei der Aufgabe komm ich echt nicht weiter, und dabei hab ich schon soviel ausprobiert ..
ich hab z.b. eine aff Abbildung aufgestellt, und dann halt die Punkte eingesetzt.
Danach hatte ich 6 Gleichungen mit 12 Unbekannten, und das kann ja nur falsch sein ...
Ich weiss auch, dass der Schwerpunkt s = 1/3*(a+b+c)  ist [a,b,c sind Vektoren).

Es wäre sehr nett, wenn mir jemand einen kleinen Denkanstoß geben könnte...

Danke schonmal
mfg
Swifty

        
Bezug
Dreieck Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 15.03.2009
Autor: Event_Horizon

Hallo!

Nimm doch einfach an, es gibt eine affine Abbildung M bestehend aus einer linearen Abbildung L und einer Verschiebung:  [mm] \vec{y}=M(\vec{x})=L(\vec{x})+\vec{t} [/mm] . Diese soll jetzt per Definition die Eigenschaft

[mm] \vec{B}=M(\vec{A})=L(\vec{A})+\vec{t} [/mm]

[mm] \vec{C}=M(\vec{B})=L(\vec{B})+\vec{t} [/mm]

[mm] \vec{A}=M(\vec{C})=L(\vec{C})+\vec{t} [/mm]


haben. Was ist dann [mm] A(\vec{s}) [/mm] , wobei s dein Schwerpunkt ist?

Denk dran, lineare Abbildungen sind linear. Was bedeutet das? Wie kannst du umformen?


Die Rechnung läßt sich in zwei Zeilen hinschreiben und ist recht einfach. Die Idee, Matrizen o.ä. zu berechnen, fürht zu nichts, denn du sollst das allgemein zeigen, es muß also auch im 42-dimensionalen Raum gelten.

Bezug
                
Bezug
Dreieck Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 So 15.03.2009
Autor: Swifty

Hallo!
Vielen Dank für deine Hilfe!
Das man für die Aufgabe quasi nur 2 Zeilen brauch hätt ich nicht gedacht, hab bis jetzt bei meinen alten versuchen über 2 Seiten ...

Also für den Schwerpunkt S muss ja gelten (weil es halt ein FP ist):
[mm] \vec{S} [/mm] = [mm] M(\vec{S}) [/mm] = [mm] L(\vec{S}) [/mm] + [mm] \vec{t} [/mm]

ich hab jetzt die Gleichung nach [mm] \vec{t} [/mm] aufgelöst und in deine 3 oben genannten Gleichungen eingesetzt.

Eigentlich versteh ich sowohl die Aufgabe als auch deinen Ansatz, nur irgendwie wills nicht richtig klick machen, ich komm einfach nicht auf eine vernünftige Lösung :-(
mfg
Swifty

Bezug
                        
Bezug
Dreieck Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 So 15.03.2009
Autor: Event_Horizon

Hi!

Du sollst nicht nach [mm] \vec{t} [/mm] auflösen.

Setze doch mal [mm] \vec{s}=\frac{1}{3}(\vec{A}+\vec{B}+\vec{C}) [/mm] ein, und benutze die Linearität sowie das Distributivgesetz für lin. Funktionen.

DANN kannst du meine drei Formeln benutzen, und dann steht es da.

Bezug
                                
Bezug
Dreieck Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 15.03.2009
Autor: Swifty

hi
also wenn ich für [mm] \vec{s} [/mm] = [mm] 1/3*(\vec{A} [/mm] + [mm] \vec{B} [/mm] + [mm] \vec{c}) [/mm] einsetze und das dann umforme, komm ich auf:
[mm] \vec{A} [/mm] + [mm] \vec{B} [/mm] + [mm] \vec{C} [/mm] = [mm] L(\vec{A}+\vec{B}+\vec{C}) [/mm] + 3t
Das hab ich dann nach [mm] \vec{A} [/mm] umgeformt und hier eingesetzt:
[mm] \vec{A} [/mm] = [mm] L(\vec{A}) [/mm] + t
also
[mm] L(\vec{A}) [/mm] + t + [mm] \vec{B} [/mm] + [mm] \vec{C} [/mm] = [mm] L(\vec{A}+\vec{B}+\vec{C}) [/mm] + 3t
<=>
[mm] \vec{B} [/mm] + [mm] \vec{C} [/mm] = [mm] L(\vec{B} [/mm] + [mm] \vec{C}) [/mm] + 2t
<=>
[mm] \vec{B} [/mm] = [mm] L(\vec{B} [/mm] + [mm] \vec{C}) [/mm] + 2t - [mm] \vec{C} [/mm]
<=>
[mm] \vec{B} [/mm] = [mm] L(\vec{B}) [/mm] + [mm] L(\vec{C}) [/mm] + 2t - [mm] \vec{C} [/mm]
ich komm aber irgendwie nicht auf eine vernünftige Lösung :-(


Bezug
                                        
Bezug
Dreieck Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 15.03.2009
Autor: Event_Horizon

Hmmm, woher kommen deine 3t?


[mm] M(1/3(\vec{A}+\vec{B}+\vec{C}))=L(1/3*(\vec{A}+\vec{B}+\vec{C}))+\vec{t} [/mm]


Jetzt ist L ja linear, und dann gilt [mm] L(1/3*(\vec{A}+\vec{B}+\vec{C}))=1/3*L(\vec{A})+1/3*L(\vec{B})+1/3*L(\vec{C}) [/mm]

Kannst du das mit meinen drei Formeln verbasteln, sodaß da [mm] 1/3*(\vec{A}+\vec{B}+\vec{C}) [/mm] raus kommt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]