www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungDreieck mit zwei unbekannten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Dreieck mit zwei unbekannten
Dreieck mit zwei unbekannten < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck mit zwei unbekannten: Idee
Status: (Frage) beantwortet Status 
Datum: 12:39 So 26.05.2013
Autor: RobB

Aufgabe
Berechnen Sie die unbekannten Seiten des Dreiecks.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[][Externes Bild http://thumbs.picr.de/14612789ez.jpg]

Hallo zusammen, also ich muss abgebildetes Dreieck berechnen. Eigentlich über den Sinussatz ganz einfach. Aber den dürfen wir aus Übungszwecken nicht benutzen. Benutzen dürfen wir Phytagoras und die Winkelfunktionen. Als Ansatz habe ich:

[mm] a^2=z^2-y2 [/mm]        für das linke Dreieck
[mm] y^2=a^2-z^2 [/mm]
[mm] z^2=a^2-y^2 [/mm]

[mm] b^2=x^2+y^2 [/mm]    für das rechte Dreieck
[mm] y^2=b^2-x^2 [/mm]
[mm] x^2=b^2-y^2 [/mm]

y ist ja die gemeinsame Seite. Von daher dachte ich das das die Formel für das linke Dreieck in die Formel für das rechte Dreieck einsetzten kann um so zum Ergebnis zu kommen. Aber danach habe ich immer noch zu viele Unbekannte um damit weiter zu rechnen. Oder gibt es eine Lösung über Hilfslinien ?

        
Bezug
Dreieck mit zwei unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 So 26.05.2013
Autor: Steffi21

Hallo, du hast folgende Gleichungen:

(1) [mm] \alpha_1+\alpha_2=97^{0} [/mm]

(2) [mm] 16m^2=y^2+z^2 [/mm] im linken Dreieck

(3) [mm] 6,25m^2=y^2+x^2 [/mm] im rechten Dreieck

(4) [mm] sin(\alpha_1)=\bruch{z}{4m} [/mm] im linken Dreieck

(5) [mm] sin(\alpha_2)=\bruch{x}{2,5m} [/mm] im rechten Dreieck

macht fünf Gleichungen mit fünf Unbekannten

Steffi


Bezug
                
Bezug
Dreieck mit zwei unbekannten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:09 So 26.05.2013
Autor: RobB

Danke für die schnelle Antwort.
Aber wärest du so nett mir das einmal komplett zu Lösen mit Rechenweg. Ich bekomme das nicht gelöst.

Rob

Bezug
                        
Bezug
Dreieck mit zwei unbekannten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 So 26.05.2013
Autor: angela.h.b.


> Danke für die schnelle Antwort.
> Aber wärest du so nett mir das einmal komplett zu Lösen
> mit Rechenweg. Ich bekomme das nicht gelöst.

>

> Rob

Hallo,

[willkommenmr].

Das Forum ist keine Lösungsmaschine.
Es funktioniert etwas anders:

Du machst mal vor, was Du bisher getan hast.
Dann können wir sehen, an welcher Stelle es klemmt, und gezielt weiterhelfen.

LG Angela
 

Bezug
                                
Bezug
Dreieck mit zwei unbekannten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 So 26.05.2013
Autor: RobB

Ich habe die Formeln soweit umgestellt und in einander angefügt um den Winkel alpha1 zu bekommen:

[mm] 16m^2=6,25m^2+((sin97°-alpha1)*2,5m)^2+((sin(alpha1)*4m)^2 [/mm]

Wenn ich alpha1 hätte, hätte ich auch alpha2 durch: 97°-alpha1=alpha2. Dann könnte ich leicht die Gegenkath. über den sinus ausrechnen.

Bezug
                                        
Bezug
Dreieck mit zwei unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 26.05.2013
Autor: MathePower

Hallo RobB,

> Ich habe die Formeln soweit umgestellt und in einander
> angefügt um den Winkel alpha1 zu bekommen:
>  
> [mm]16m^2=6,25m^2+((sin97°-alpha1)*2,5m)^2+((sin(alpha1)*4m)^2[/mm]
>  
> Wenn ich alpha1 hätte, hätte ich auch alpha2 durch:
> 97°-alpha1=alpha2. Dann könnte ich leicht die Gegenkath.
> über den sinus ausrechnen.  


Es sind doch die Seiten a und b
sowie deren eingeschlossener Winkel gegeben.

Damit kannst Du zunächst den Cosinussatz
zur Ermittlung der unbekannten Seite anwenden.


Gruss
MathePower

Bezug
                                                
Bezug
Dreieck mit zwei unbekannten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 So 26.05.2013
Autor: angela.h.b.


> Damit kannst Du zunächst den Cosinussatz
> zur Ermittlung der unbekannten Seite anwenden.

RoB schreibt, daß zu Übungszwecken nur Pythagoras und die Winkelfunktionen verwendet werden dürfen.

Da der Sinussatz nicht verwendet werden soll, gehe ich mal davon aus, daß auch der Kosinussatz unerwünscht ist, was die Angelegenheit etwas ungemütlicher macht.

LG Angela

Bezug
                                        
Bezug
Dreieck mit zwei unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 So 26.05.2013
Autor: MathePower

Hallo RobB,

> Ich habe die Formeln soweit umgestellt und in einander
> angefügt um den Winkel alpha1 zu bekommen:
>  
> [mm]16m^2=6,25m^2+((sin97°-alpha1)*2,5m)^2+((sin(alpha1)*4m)^2[/mm]
>  
> Wenn ich alpha1 hätte, hätte ich auch alpha2 durch:
> 97°-alpha1=alpha2. Dann könnte ich leicht die Gegenkath.
> über den sinus ausrechnen.  


Betrache die unbekannte Seite y.

Für diese gilt doch zum einen: [mm]y=a* sin(\alpha_{1})[/mm]
Und zum anderen [mm]y=b*sin(\alpha_{2})[/mm]

Setze diese gleich und benutze, daß [mm]\alpha_{1}+\alpha_{2}=180^{\circ}-97^{\circ}[/mm]

Bestimme dann daraus einen der unbekannten Winkel.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]