Dreiecke < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Konstruieren Sie aus den gegebenen Stücken alle inkongruenten Lösungen für das Dreieck ABC, beschreiben und begründen Sie die Konstruktion!
a) Seite c, Seitenhalbierende [mm] s_c [/mm] der Seite c, an c liegender Winkel x (c=9,5cm [mm] s_c=4cm [/mm] x=32°)
b) Seite a, Seite c, Seitenhalbierende [mm] s_b [/mm] (a=6cm, c=2,9cm, [mm] s_b=4,1cm)
[/mm]
c) Seite b, Höhe [mm] h_a [/mm] und Winkel x (b=7,6cm [mm] h_a=6,4cm [/mm] x=75°) |
Ich weiß nicht was ich unter inkongruente Lösung verstehen soll und desweiteren konnte ich solche Dreiecke überhaupt nicht konstruieren. Könnt ihr mir paar Tipps geben wie ich es überhaupt konstruieren kann?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:12 Mo 23.04.2007 | Autor: | DirkG |
Mit diesem "inkongruent" ist nur gemeint, dass du im Falle mehrerer möglicher Lösungsdreiecke (jaja, das gibt es mitunter!) die auch alle konstruieren sollst.
a) ist doch nun wirklich einfach:
$c$ zeichnen, Winkel $x$ am entsprechenden Eckpunkt von $c$ als Strahl abtragen.
Dann Mittelpunkt von $c$ konstruieren und dort Kreis mit Radius [mm] $s_c$ [/mm] abtragen. Der Schnittpunkt mit dem og. Strahl muss dann Eckpunkt $C$ sein.
b) ist schon etwas schwerer - ein Tipp:
Spiegle den Punkt $B$ an der Seitenmitte von $AC$, es entsteht der Punkt $B'$. Von dem Parallelogramm $ABCB'$ kennst du nun alle Seitenlängen sowie die Diagonalenlänge von $BB'$, das ist nämlich [mm] $2s_b$. [/mm] Damit kannst du das Parallelogramm und somit auch das Dreieck konstruieren.
Zu c) Wo liegt der Winkel $x$ ? Wenn du die üblicheren Bezeichnungen [mm] $\alpha,\beta,\gamma$ [/mm] verwenden würdest, müsste man sowas nicht nachfragen.
|
|
|
|