www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Dreiecksberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Dreiecksberechnung
Dreiecksberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksberechnung: rechtwinkliges Dreieck
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:44 Do 14.05.2009
Autor: monsterzahn

Aufgabe
In einem rechtwinkligen Dreieck sei 2a = b + c

In welchem Verhältnis müssen b und c sein? Wie lautet die Formel?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Do 14.05.2009
Autor: reverend

Hallo Monsterzahn, [willkommenmr]

hast Du denn selbst eine Idee zu der Aufgabe? Welche Beziehungen gelten im rechtwinkligen Dreieck? Welche gelten in diesem speziellen?

Wir erwarten hier etwas Eigeninitiative. Dann helfen wir auch gern.

Grüße
reverend

Bezug
                
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Do 14.05.2009
Autor: monsterzahn

Dies ist eigentlich der Punkt an dem ich nicht weiterkam. die ursprüngliche Aufgabe war diese:
in einen Würfel wird eine Pyramide gestellt, deren Spitze an einer Kante ist. wie hoch muss die Pyramide sein, damit dir Oberfläche der Pyramide genau halb so gross ist wie die des Würfels.
Seite des Würfels gleich a, Höhe der Pyramide gleich x.
Meine Überlegungen haben mich zum Schluss gebracht, dass
x + Wurzel aus (a Quadrat + x Quadrat) = 2a sein müssen.
Da weiss ich nun nicht weiter. Ich kenne nur den Pythagoras, aber der hilft mir nicht weiter...
Sorry für die Schreibweise, aber ich finde die Zeichen nicht.

Bezug
                        
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Do 14.05.2009
Autor: abakus


> Dies ist eigentlich der Punkt an dem ich nicht weiterkam.
> die ursprüngliche Aufgabe war diese:
>  in einen Würfel wird eine Pyramide gestellt, deren Spitze
> an einer Kante ist. wie hoch muss die Pyramide sein, damit
> dir Oberfläche der Pyramide genau halb so gross ist wie die
> des Würfels.
> Seite des Würfels gleich a, Höhe der Pyramide gleich x.
>  Meine Überlegungen haben mich zum Schluss gebracht, dass
>  x + Wurzel aus (a Quadrat + x Quadrat) = 2a sein müssen.
>  Da weiss ich nun nicht weiter. Ich kenne nur den
> Pythagoras, aber der hilft mir nicht weiter...

Tut er doch!
Aus 2a=b+c folgt a=(b+c)/2, mit anderen Worten: a ist der Mittelwert von b und c (und damit nicht die längste Seite. Die längste Seite (und damit Hypotenuse) kann also nur b oder c sein.
Lassen wir es bei der üblichen Schreibweise, es sei also c die Länge der Hypotenuse.
Dann gilt
[mm] c^2=b^2+a^2 [/mm]
[mm] c^2=b^2+(\bruch{b+c}{2})^2 [/mm]
Löse das mal ein wenig auf und sieh, ob sich das nach dem gesuchten Verhältnis umstellen lässt.
Gruß Abakus


>  Sorry für die Schreibweise, aber ich finde die Zeichen
> nicht.


Bezug
                                
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Do 14.05.2009
Autor: monsterzahn

$ [mm] c^2=b^2+(\bruch{b+c}{2})^2 [/mm] $
zu diesem Ergebnis bin ich gekommen, aber ich kann das nicht auflösen.

$ [mm] c^2=b^2+\bruch{b^2}{4}+\bruch{bc}{4}+\bruch{c^2}{4} [/mm] $

Stimmt das mal soweit?

Bezug
                                        
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Do 14.05.2009
Autor: weduwe


> [mm]c^2=b^2+(\bruch{b+c}{2})^2[/mm]
>  zu diesem Ergebnis bin ich gekommen, aber ich kann das
> nicht auflösen.
>  
> [mm]c^2=b^2+\bruch{b^2}{4}+\bruch{bc}{4}+\bruch{c^2}{4}[/mm]
>  
> Stimmt das mal soweit?

nicht ganz

[mm]5b^2+2bc-3c^2=0[/mm]

was im endeffekt auf

[mm]a:b:c=8:6:10[/mm] führt

was man noch durch 2 kürzen könnte


Bezug
                                                
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:05 Fr 15.05.2009
Autor: monsterzahn

Also ich bin wirklich nicht so fit mit Mathe. Das ist schon die Lösung, aber wie leitet sich das schrittweise ab? irgendwie mit der q formel, oder?

Bezug
                                                
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Fr 15.05.2009
Autor: monsterzahn

ok... habs gecheckt:
in meinem Beispiel wäre dann;

$ [mm] x=\bruch{3}{4}a [/mm] $ oder?

An die Seitenverhältnisse hab ich nicht gedacht.

War bestimmt ziemlich einfach für euch, nein?

Bezug
                                                        
Bezug
Dreiecksberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Fr 15.05.2009
Autor: reverend

Geht so. ;-)

Aber schön, wenn Du selbst den Weg nachvollziehen konntest. Mehr wollen wir hier doch gar nicht erreichen.

Grüße
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]