www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDrillinge beim Zahlenlotto
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Drillinge beim Zahlenlotto
Drillinge beim Zahlenlotto < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drillinge beim Zahlenlotto: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 01.11.2010
Autor: hansmuff

Aufgabe
Bei einer Ziehung des Zahlenlottos 6 aus 49 wurden die Gewinnzahlen 25,26,27,30,31,32 gezogen. Berechnen Sie die Wahrscheinlichkeit, dass wie hier zwei getrennte Dreierblocks aufeinanderfolgender Zahlen gezogen werden.

Hinweis:
Sei [mm]X={(x_1,...,x_6):1\le x_1 <... Betrachten Sie die bijektive Abbildung [mm]f:X\rightarrow Y[/mm] mit
[mm] f((x_1,...,x_6))=(x_1,x_2-1,x_3-2,x_4-3,x_5-4,x_6-5)[/mm].

Abschnitte aufeinanderfolgender Zahlen eines 6-Tupels werden durch diese zu Abschnitten gleicher Zahlen.

Hallo zusammen,

im Folgenden das, was ich mir zu der Aufgabe bis jetzt überlegt habe:

Es gibt 47 Möglichkeiten die erste Zahl [mm]a[/mm] eines Drillings zu ziehen. Die anderen beiden Zahlen des Drilling sind dann schon festgelegt durch [mm]a+1[/mm] und [mm]a+2[/mm].

Jetzt muss noch ein weiterer Drilling gezogen werden. Da die beiden Zahlen vor [mm]a[/mm] nicht mehr in Frage kommen (sie wurden schon gezogen), können wir den Drilling noch aus [mm]49-5=44[/mm] Zahlen ziehen.
Das sind dann also 43 Möglichkeiten.

Die gesamte Wahrscheinlichkeit wäre dann also [mm]49\cdot43[/mm] Möglichkeiten.

Dabei habe ich aber einen Fehler gemacht: Ich habe einige Möglichkeiten doppelt gezählt. Z.B. sind 25,26,27 und 27,26,25 bei mir unterschiedliche Ziehungen.

Wie kann ich das ausschließen? Und ist mein Ansatz bis dahin soweit richtig, oder hab' ich einen Denkfehler?

Und eine andere Frage: Wahrscheinlich ist mein Ansatz zu umständlich. Denn mit dem Hinweis in der Aufgabe hat das nicht viel zu tun. Wie beziehe ich diese dort definierte Abbildung f mit ein bzw. wie kann ich damit die Aufgabe lösen?

Danke für eure Hilfe!

lg, hansmuff

        
Bezug
Drillinge beim Zahlenlotto: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Di 02.11.2010
Autor: wauwau

im Prinzip ist - so glaube ich zumindest - die aufgabe ja damit getan, die beiden anfangszahlen der dreierblocks zu ziehen.
Seien die zeihungen (a,a+1,a+2) (b,b+1,b+2)
mit a+2 < b (getrennte Dreierblocks)
ziehst du also a (43 verschiedene Möglichkeiten), dann hast du 44-a Möglichkeiten für b
(z.B. a=1, b=5,6,.....47)
D.h. also insgesamt
[mm] $\summe_{a=1}^{43}(44-a) [/mm] = [mm] \frac{44.43}{2} [/mm] = 946$


Darauf kommst du auch mit der Abbildung
(a,a,a,b,b,b) sind die Werte der Abbildung von getrennten Tripel-Ziehungen
da a, b nun im Wertebereich der Funktion liegen also [mm] $1\le [/mm] a,b [mm] \le [/mm] 44$ sein muss gibt es für a 44 und für b 43 Möglichkeitn, da a<b sein muss, noch durch zwei dividiert und schon erhält man das obige Ergebnis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]