www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDurch P1, P2 genau 1 Gerade
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Durch P1, P2 genau 1 Gerade
Durch P1, P2 genau 1 Gerade < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durch P1, P2 genau 1 Gerade: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 18:34 Fr 30.04.2010
Autor: Lyrn

Aufgabe
Sei V ein K-VR und seien P1, P2 zwei verschiedene Punkte in V. Dann existiert genau eine Gerade, die P1 und P2 enthält.

Hallo,
ich brauche Hilfe bei diesem Beweis.

Meine Ansätze waren bis jetzt:
1.
Ich habe [mm] g_{1}=P_{1}+\{{\lambda_{1}*(P_{2}-P_{1}})\} [/mm] und [mm] g_{2}=P_{2}+\{{\lambda_{2}*(P_{1}-P_{2}})\} [/mm] aufgestellt und versucht Gleichheit zu zeigen.

2.
Ich habe versucht zu Zeigen, dass [mm] \{{\lambda_{1}*(P_{2}-P_{1}})\} [/mm] und [mm] \{{\lambda_{2}*(P_{1}-P_{2}})\} [/mm] der selbe Unterraum ist, und damit die Gleichheit folgt.

Ich komme aber mit keiner von meinen Ideen weiter. Darum hoffe ich dass mir hier jemand auf die Sprünge helfen kann.

lg!

        
Bezug
Durch P1, P2 genau 1 Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Fr 30.04.2010
Autor: M.Rex

Hallo.

Nimm mal an, du hast zwei verscheidene Geraden, die durch [mm] P_{1} [/mm] und [mm] p_{2} [/mm] gehen, also:

[mm] h:\vec{x}=\vec{a}+\lambda*\vec{u} [/mm]
[mm] g:\vec{x}=\vec{b}+\mu*\vec{v} [/mm]

Jetzt nimm mal an, dass $ [mm] g\ne [/mm] h $ und führe diese Aussage zum Widerspruch.

Marius

Bezug
                
Bezug
Durch P1, P2 genau 1 Gerade: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:18 Fr 30.04.2010
Autor: Lyrn

Das war ja im Prinzip mein erster Ansatz, aber ich weiß nicht wie ich da zu einem Widerspruch kommen soll. Kannst du mir da noch ein wenig helfen?

Geraden sind ja Nebenklassen von Unterräumen aus V der Dimension 1. Wenn z.B. 2 Gerade parallel sind, dann sind sie Nebenklassen des selben Unterraums.

Aus Lagrange folgt, dass Nebenklassen entweder gleich oder elementefremd sind.

Ich könnte doch jetzt zeigen, dass g1 und g2 entweder in der gleichen Nebenklasse liegen müssen (folgt sie sind gleich) oder in unterschiedlichen Nebenklassen.
Als Ergebnis müsste ich bekommen, dass g1 und g2 in der selben Nebenklasse liegen.


Wir behandeln gerade dieses Thema (Affine Geometrie eines Vektorraums) und daher denke ich, dass wir den Beweis mit Nebenklassen und Unterräume führen sollen.

Bezug
                        
Bezug
Durch P1, P2 genau 1 Gerade: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 02.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]