www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenDurchf. Funktionsuntersuchung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Durchf. Funktionsuntersuchung
Durchf. Funktionsuntersuchung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchf. Funktionsuntersuchung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 11:47 Sa 17.11.2007
Autor: Isaak

Aufgabe
Führen Sie eine vollständige Funktionsuntersuchung durch.

F(x)= [mm] -\bruch{1}{4}*(x³-2x²+16x) [/mm]

Guten Tag,

bei dieser Aufgabe verlangt man ja eine vollständige Funktionsuntersuchung (1.Ableitung,2.Symmetrie des Graphen, 3.Nullstellen, 4. [mm] Verhalten|x|->\infty, [/mm] 5.Extremstellen,6.Wendestellen, 7.Graph).

Bis jetzt habe ich zur folgenden Aufgabe dies hier berechnet;

1.
f(x)  =  [mm] -\bruch{1}{4}*(x³-2x²+16x) [/mm]

f(x)  =  [mm] -\bruch{1}{4}x³+\bruch{1}{2}x²-4x [/mm]

f'(x) = [mm] -\bruch{3}{4}x²+x-4 [/mm]  

f''(x)= [mm] -\bruch{3}{2}x+1 [/mm]

2.
keine Symmetire da sowohl gerade als auch ungerade Hochzahlen in f(x) vorkommen.

3.
Nullstellen Ansatz (x)=0
Lösung: x1= 0

Jetzt hatte ich versucht die nächsten beiden Lösungen durch Polynomdivision und pq-Formel zu berechnen. Das hatte leider nicht geklappt;

[mm] (-\bruch{1}{4}x³+\bruch{1}{2}x²-4x):(x-0)=-\bruch{1}{4}x²+\bruch{1}{2}x-4 [/mm]

[mm] -\bruch{1}{4}x²+\bruch{1}{2}x-4 [/mm]  | [mm] *-\bruch{1}{4} [/mm]

= [mm] x²-\bruch{1}{8}x+1 [/mm]


pq-Formel: x1/2 = -(1/8)/2 +- [mm] \wurzel{((-1/8)²/4)-1} [/mm] = MATH ERROR

Könnt Ihr mir vielleicht weiterhelfen und zeigen wo ich einen Fehler gemacht bzw. was vollkommen falsches gerechnet habe?

mfg Isger

        
Bezug
Durchf. Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Sa 17.11.2007
Autor: Maggons

Huhu

Oben alles richtiger außer der 2. Ableitung; glaube du hast dich nur verschrieben, weil dir bis dahin kein Fehler dergleichen passiert ist, also schau einfach nochmal drauf :)

Sonst kann ich dir leider keinen Fehler in deiner Rechnung zeigen; es ist richtig, dass da ein "MATH ERROR" rauskommt, weil schlichtweg x=0 die einzige Nullstelle der Funktion ist :)

PS: Wenn du es dir zeichnen lässt bzw. zeichnest, siehst du das auch sofort

Ciao

Bezug
        
Bezug
Durchf. Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Sa 17.11.2007
Autor: Steffi21

Hollo,

[mm] 0=-\bruch{1}{4}x^{2}+\bruch{1}{2}x-4 [/mm]

jetzt Multiplikation mit -4

[mm] 0=x^{2}-2x+16 [/mm]

hier hattest du einen Fehler, es bleibt aber bei der Nullstelle [mm] x_0=0, [/mm] die Diskriminante ist negativ, es gibt keine reelle Lösung, Hinweis: du brauchst nur x Ausklammern und bekommst die Gleichung 2. Grades,

Steffi

Bezug
                
Bezug
Durchf. Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 17.11.2007
Autor: Isaak

Guten Abend,

also besitzt die Funktion nur eine Nullstelle x1=0!
Wie bestimmt man (nun leicht erklärt) das Verhalten für [mm] |x|->\infty? [/mm]
Bei den Extremstellen unter Nutzung von f'(x)
kommt folgende pq-Formel raus;
[mm] x²-\bruch{4}{3}x+\bruch{16}{3} [/mm] -> eingefügt in pq-Formel= MATH ERROR
Ist hier nun auch nur eine Extremstelle vorhanden, oder habe ich etwas falsch gerechnet?
Könnt mir desweiteren auch erklären wie man lok. Minimum und lok. Maximum angibt?
Nun fällt mir auf, dass wir die Wendestellen nicht berechnen sollen! Würde ich es trotzdem versuchen, wäre es mir überhaupt noch möglich sie zu bestimmen, da doch keine Gleichung 2. Grades mehr gegeben ist?

Viele Fragen und wenig Wissen. Ich freue mich über jegliche Hilfe.

mfg Isger

Bezug
                        
Bezug
Durchf. Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Sa 17.11.2007
Autor: hase-hh

Moin Isaak,

tschö, wenn die erste ableitung keine nullstellen hat, dann gibt es auch keine waagerechten tangenten und auch keine lokalen extrema!

klar, kannst du wendestellen berechnen.

notwendige bedingung:

f''(x)=0  

0 = - [mm] \bruch{3}{2}x [/mm] +1

x= [mm] \bruch{2}{3} [/mm]

hinreichende bedingung:

[mm] f'''(x_{W}) \ne [/mm] 0    da f''' (x) = - [mm] \bruch{3}{2} [/mm]

also unabhängig von einem bestimmten x   immer ungleich 0.

=> WP ( 2/3  / f ( 2/3) )

alles roger?!

Bezug
                                
Bezug
Durchf. Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 18.11.2007
Autor: Isaak

Hey wolfgang,

das von dir Erwähnte zu den Extrema hätte ich mir wirklich selbst denken können!
Zu den Wendepunkten noch eine Frage;

$ [mm] f'''(x_{W}) \ne [/mm] $ 0    da f''' (x) = - $ [mm] \bruch{3}{2} [/mm] $

Was soll diese Bedingung aussagen?  Heißt es etwa, dass dadurch, dass bei der dritten Ableitung keine Variable x mehr steht es nie mehr gleich 0 gesetzt werden kann und somit die Bedingung erfüllt wurde? Ist vielleicht umständlich gefragt, trotzdem hoffe ich, dass mich jemand hier versteht.

Als letzte Frage; Wie gibt man das Verhalten für |x| -> [mm] \infty [/mm] an? Ich weiß soviel, dass man den Summanden mit der größten Hochzahl dafür benutzt. In diesem Fall -1/4x³, also eine negative Basis plus ungeraden Exponenten = ?

mfg Isger

Bezug
                                        
Bezug
Durchf. Funktionsuntersuchung: soweit richtig!
Status: (Antwort) fertig Status 
Datum: 18:14 So 18.11.2007
Autor: Loddar

Hallo Isger!


> Zu den Wendepunkten noch eine Frage;
>
> Was soll diese Bedingung aussagen?  Heißt es etwa, dass
> dadurch, dass bei der dritten Ableitung keine Variable x
> mehr steht es nie mehr gleich 0 gesetzt werden kann und
> somit die Bedingung erfüllt wurde?

[ok] Genau. Denn es gilt ja für alle $x_$ : $f'''(x) \ [mm] \not= [/mm] \ 0$ .


> Als letzte Frage; Wie gibt man das Verhalten für |x| ->
> [mm]\infty[/mm] an? Ich weiß soviel, dass man den Summanden mit der
> größten Hochzahl dafür benutzt. In diesem Fall -1/4x³, also
> eine negative Basis plus ungeraden Exponenten = ?

[ok] Genau! Und gegen welche Werte strebt [mm] $-\bruch{1}{4}*x^3$ [/mm] für [mm] $x\rightarrow-\infty$ [/mm] bzw. [mm] $x\rightarrow+\infty$ [/mm] ?


Gruß
Loddar


Bezug
                                                
Bezug
Durchf. Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 19.11.2007
Autor: Isaak

Hey,

um $ [mm] x\rightarrow-\infty [/mm] $ bzw. $ [mm] x\rightarrow+\infty [/mm] $ zu bekommen muss für $ [mm] x\rightarrow+\infty [/mm] $ -x stehen und für $ [mm] x\rightarrow+\infty [/mm] $ +x?!
Wie schreibt man das denn richtig nieder ?

mfg isger

Bezug
                                                        
Bezug
Durchf. Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Di 20.11.2007
Autor: defjam123

Hey
gibts mehrere schreibweisen. Ich würde das einfach so schreiben: Wenn [mm] x\to+\infty [/mm] dann [mm] gilt:f(x)\to-\infty [/mm]
Wenn [mm] x\to-\infty [/mm] dann [mm] gilt:f(x)\to+\infty [/mm]
Das Kannst du aber auch mit lim schreiben.Aber so würds dein Lehrer auch schon akzeptieren, denk ich.

Gruss

Bezug
                                                                
Bezug
Durchf. Funktionsuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Di 20.11.2007
Autor: Isaak

Hey,

danke für eure Hilfe!
Die Aufgabe habt ihr mir jetzt vollständig beantwortet.

mfg Isger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]