www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperDurchschnitt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Durchschnitt
Durchschnitt < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Sa 17.11.2007
Autor: Kreide

Aufgabe
U={f [mm] \in K^{M} [/mm] | f(x)=0}
V={f [mm] \in K^{M} [/mm] | f(a)=f(b) für alle a,b [mm] \in [/mm] M }
U und V sind Teilräume von [mm] K^{M} [/mm]

K ist ein Körper und M eine nichtleere menge, wobei x ein Element von M ist

Zeige dass folgende ausagen wahr sind
U + V [mm] =K^{M} [/mm]
U [mm] \cap [/mm] V ={0}

Hallo, ich habe eine Frage zu dieser Aufgabe,  ich bin etwas verwirrt, weil in U x die Variable ist  und in V a und b.... und überhaupt ist es mir etwas schleierhaft, wie ich eine Vereinigung aus diesen Mengen bilden kann.... mir ist schon irgendwie klar dass hier die einzelnen Elemente irgendwelche Funktionen sind, aber .....  :(

Kann mir jemand helfen?

ch habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

        
Bezug
Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Sa 17.11.2007
Autor: angela.h.b.


> U={f [mm] \in K^{M} [/mm] | f(x)=0}
>  [mm] V=\{f \in K^{M} | f(a)=f(b) für alle a,b \in M \} [/mm]
>  U und V sind Teilräume von [mm] K^{M} [/mm]
>  
>
> Zeige dass folgende ausagen wahr sind
>  U + V [mm] =K^{M} [/mm]
>  U [mm] \cap [/mm] V ={0}


>  Hallo, ich habe eine Frage zu dieser Aufgabe,  ich bin
> etwas verwirrt, weil in U x die Variable ist  und in V a
> und b....

Hallo,

[willkommenmr].

Was sind eigentlich K und M?

Sind mit [mm] K^M [/mm] die Funktionen von [mm] M\to [/mm] K gemeint?


Dann habe ich  den Verdacht, daß die erste Menge, U, nicht richtig angegeben ist.

Es bleibt nämlich im Dunkeln, ob in U die Funktionen sind,

- die für alle [mm] x\in [/mm] K  =0 sind
-die für ein x [mm] \in [/mm] K =0 sind (das scheidet allerdings aus, da es sich um Unterräume v. [mm] K^M [/mm] handeln soll)
- die an einer festen Stelle x   den Wert 0 annehmen.


In V sind dann die Funktionen, die für alle Elemente aus M denselben Wert haben, also die konstanten Funktionen.

> und überhaupt ist es mir etwas schleierhaft, wie
> ich eine Vereinigung aus diesen Mengen bilden kann

Vereinigung ist doch einfach: alle Elemente aus U und alle aus V werden zusammen in einen großen Topf geschüttet.
In der Vereinigung sind die elemente, die in U oder in V sind (Def. der Vereinigung v. Mengen).

Aber von Vereinigung ist hier gar nciht die Rede, sondern v. U+V.
Schau mal nach, wie Ihr die Summe v. Vektorräumen definiert hattet.

Gruß v. Angela


Bezug
                
Bezug
Durchschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Sa 17.11.2007
Autor: Kreide


>  
> Hallo,
>  
> [willkommenmr].

Danke!!! :-)
echt, dass hier jemand so schnell antwortet hätte ich ja echt nicht gedacht!!!!

>  
> Was sind eigentlich K und M?

hab ich grad ergänzt, sorry, hatte es vergessen.....

> Aber von Vereinigung ist hier gar nciht die Rede, sondern
> v. U+V.

Ich meinte den Durchschnitt.... ;) Die Zeichen [mm] \cap [/mm] und [mm] \cup [/mm] sind sich einfach zum verwechseln ähnlich.... *g*

>  Schau mal nach, wie Ihr die Summe v. Vektorräumen
> definiert hattet.

ok, werd ich machen...*lol*

danke noch mal für deine superschnelle hilfe!!!!


>  
> Gruß v. Angela
>  


Bezug
                        
Bezug
Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Sa 17.11.2007
Autor: angela.h.b.

Nun wird einiges klarer.

In U sind also alle die Funktionen, die an einer fest vorgegebenen Stelle x [mm] \in [/mm] M den Wert 0 haben.

Wenn Dich das x wirr macht, weil es normalerweise für eine Variable steht, sei einfach etwas nett zu Dir und formuliere die Angelegenheit um.

Wir machen das jetzt so: M ist eine Menge, die das Element m enthält,

und [mm] U:=\{ f\in K^M | f(m)=0\}, [/mm] also alle Funktionen, die bei m eine Nullstelle haben.

Bei V hatte ich ja schon verraten, daß das die konstanten Funktionen sind.

Nun, der Durchschnitt enthält die Funktionen, die in beiden Mengen sind, also konstant und Nullstelle bei m.

Gruß v. Angela

Bezug
                                
Bezug
Durchschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Sa 17.11.2007
Autor: Kreide

also die Summe von 2 Teilräumen ist wieder ein Teilraum , dass bedeutet, dass [mm] K^{M} [/mm] auch ein Teilraum ist

U+V={u+v | u [mm] \in [/mm] U , v [mm] \in [/mm] V}

muss ich jetzt also jeweils ein Element aus U bzw V nehmen und addieren?
aber wie geht denn das... :(
U+V = [mm] f(x)+f(a)=0+f(b)=f(b)=K^{M} [/mm]
das sieht total falsch aus.... isses bestimmt auch, oder?

Bezug
                                        
Bezug
Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Sa 17.11.2007
Autor: angela.h.b.


> hatte mal nachgeschaut wegen der summe von Teilräumen....
> ist hier die direkte Summe gemeint? [mm]\oplus[/mm]  

Zunächst mal nicht.

Wenn Du Dir die Def,. der direkten Summe anschaust, beinhaltet das ja zweierlei:

1. Summe, also + , diese Definition brauchen wir.
2. Direkte Summe nennt man das, wenn zusätzlich die Teilräume nur die Null als gemeinsames Element haben.
Das sollst Du ja in Deiner Aufgabe auch noch zeigen.

Summa summarum zeigst Du in der Aufgabe, daß M=U [mm] \oplus [/mm] V,

jedoch zunächst brauchen wir die Def. der Summe. Das steht unter Garantie irgendwo vor der direkten Summe.

Gruß v. Angela

Bezug
                                                
Bezug
Durchschnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 Sa 17.11.2007
Autor: Kreide

oups, hatte meine frage geändert, während du sie beantwortet hattest... ;)  hab die Definition der Summe gefunden, hab aber wie man zwei kästen weiter oben sieht noch probleme damit.... :( leider...

Bezug
                                        
Bezug
Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 17.11.2007
Autor: angela.h.b.


> also die Summe von 2 Teilräumen ist wieder ein Teilraum ,
> dass bedeutet, dass [mm]K^{M}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

auch ein Teilraum ist

>  
> U+V:={u+v | u [mm]\in[/mm] U , v [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

V}

Genau.

Der Raum U+V besteht aus sämtlichen Elementen, die man durch Addition der Elemente de seinen zu denen des anderen Raumes erhälten kann.

>  
> muss ich jetzt also jeweils ein Element aus U bzw V nehmen
> und addieren?
>  aber wie geht denn das... :(
>  U+V = [mm]f(x)+f(a)=0+f(b)=f(b)=K^{M}[/mm]
> das sieht total falsch aus.... isses bestimmt auch, oder?

[mm] U+V=\{ g+h | g\in U und h\in V\}={g+h | g,h\in K^M und g(m)=0 und h(x) ist konstant\}. [/mm]

Du sollst nun ja zeigen: U+V = [mm] K^M. [/mm]

Dies beinhaltet
U+V subseteq  [mm] K^M [/mm]
und
[mm] K^m\subseteq [/mm] U+V.

Die erste Aussage ist kaum der Erwähnung wert, das ergibt sich sofort aus der Definition der Addition v. Funktionen.

Die zweite Aussage ist interessant, und da kannst Du ein wenig drüber meditieren:

jede beliebige Abbildung f aus [mm] K^M [/mm] kann man schreiben als Summe einer Funktion, die bei m eine Nullstell hat und einer konstanten Funktion.

(Um der sache auf die Spur zu kommen, schaust Du Dir am besten mal die "normalen" Funkrionen v. [mm] \IR \to \IR [/mm] an und überlegst Dir, wie man das hinkriegt.

Gruß v. Angela


Bezug
                                                
Bezug
Durchschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 So 18.11.2007
Autor: Kreide


>  U+V [mm] \subseteq[/mm]   [mm]K^M[/mm]

> Die erste Aussage ist kaum der Erwähnung wert, das ergibt
> sich sofort aus der Definition der Addition v. Funktionen.

für mich ergibt sich das irgendwie nich sofort.... ich denke glaubig zuviel nach, könntest du das noch mal etwas erläutern?

Ich hab es mal mit der Definition von der Teilmenge versucht:
U+V [mm] \subseteq K^{M} \gdw \forall [/mm] x [mm] \in [/mm] U+V : x [mm] \in K^{M} [/mm]
Da U und V Unterräume  sind, bedeutet dass, dass ein u [mm] \in [/mm] U und ein [mm] v\in [/mm] V existieren(Unterraumkriterium: Menge muss nichtleer sein). Da nun U und V Unterräume von [mm] K^{M} [/mm] sind, sind u und v auch in [mm] K^{M} [/mm] enthalten und somit ist U+V [mm] \subseteq K^{M} [/mm]
richtig?

Bezug
                                                        
Bezug
Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 18.11.2007
Autor: angela.h.b.


> >  U+V [mm]\subseteq[/mm]   [mm]K^M[/mm]

>  
> > Die erste Aussage ist kaum der Erwähnung wert, das ergibt
> > sich sofort aus der Definition der Addition v. Funktionen.
>  
> für mich ergibt sich das irgendwie nich sofort.... ich
> denke glaubig zuviel nach,

Hallo,

keinesfalls!!!

Es ist immer besser, dreimal zuviel nachzudenken, als irgendwelche abstrusen Schnellsch(l)üsse abzulassen.

Wenn Du Dich bei jeder Zeile fragst: warum eigentlich? Ist das wirklich so?, hast Du etwas über die notwendige gründliche Arbeitsweise begriffen, von der andere Studienanfänger noch weit entfernt sind.

> könntest du das noch mal etwas
> erläutern?

Das ist nicht nötig, denn Du tust es unten selbst.

>  
> Ich hab es mal mit der Definition von der Teilmenge
> versucht:
>  U+V [mm]\subseteq K^{M} \gdw \forall[/mm] x [mm]\in[/mm] U+V : x [mm]\in K^{M}[/mm]

Genau.

Sei nun x [mm] \in [/mm] U+V

>  
> Da U und V Unterräume  sind, bedeutet dass, dass ein u [mm]\in[/mm]
> U und ein [mm]v\in[/mm] V existieren

mit x=u+v.

> Da nun U und V Unterräume von [mm]K^{M}[/mm] sind,
> sind u und v auch in [mm]K^{M}[/mm] enthalten

also ist x=u+v [mm] \in K^M [/mm]

> und somit ist U+V
> [mm]\subseteq K^{M}[/mm]
>  richtig?

Ja, prima!

Gruß v. Angela

Bezug
                                                                
Bezug
Durchschnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Mo 19.11.2007
Autor: Valvakvlam

Was ich wissen wollte, hat sich erledigt. :)
Alles Gute.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]