www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDurchschnitt Intervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Durchschnitt Intervall
Durchschnitt Intervall < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchschnitt Intervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Fr 11.05.2007
Autor: Wehm

Aufgabe
Für das Intervall [mm] ]\frac{-1}{x},1+\frac{1}{x}[ [/mm] mit [mm] x\ge [/mm] 1 gilt
[mm] $\bigcap_{x=1}^{\infty}]\frac{-1}{x},1+\frac{1}{x}[=[0;1]$ [/mm]

Hoi.

Kann mir jemand sagen, warum das so ist? Ich habs mit dem limes für x -> 1+ und x -> unendlich probiert. Aber das ist ja vollkommener Unsinn.
Kann mir jemand helfen?

Gruß,
Wehm

        
Bezug
Durchschnitt Intervall: korrekte Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Sa 12.05.2007
Autor: Wehm

1:1 handelt es sich hier um
Der Durchschnitt von endlich vielen offenen Mengen ist wieder offen. Dies gilt allerdings nicht für unendliche Durchschnitte. Z. B. sind die Intervalle [mm] ]-\frac{1}{x}; [/mm] 1+ [mm] \frac{1}{x}[, x\ge [/mm] 1 offen in [mm] \IR, [/mm] aber ihr Durchschnitt

[mm] \bigcap_{x=1}^{\infty}]\frac{-1}{x};1+\frac{1}{x}[ [/mm] = [0,1]

ist nicht offen.
Das kann ich aber nicht nachvollziehen, wie man auf [0,1] kommt

Bezug
        
Bezug
Durchschnitt Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 27.05.2007
Autor: Marc

Hallo Wehm,

> Für das Intervall [mm]]\frac{-1}{x},1+\frac{1}{x}[[/mm] mit [mm]x\ge[/mm] 1
> gilt
> [mm]\bigcap_{x=1}^{\infty}]\frac{-1}{x},1+\frac{1}{x}[=[0;1][/mm]
>  
> Hoi.
>  
> Kann mir jemand sagen, warum das so ist? Ich habs mit dem
> limes für x -> 1+ und x -> unendlich probiert. Aber das ist
> ja vollkommener Unsinn.
>  Kann mir jemand helfen?

Ein Element liegt genau dann im Durchschnitt mehrerer Mengen, wenn es in allen Mengen liegt.
So sieht man sofort, dass [mm] $0\in\bigcap_{x=1}^{\infty}\left]\frac{-1}{x},1+\frac{1}{x}\right[$ [/mm] und ebenso [mm] $1\in \bigcap_{x=1}^{\infty}\left]\frac{-1}{x},1+\frac{1}{x}\right[$. [/mm]

Alle Zahlen zwischen 0 und 1 liegen ebenfalls in allen Mengen, also [mm] $[0,1]\subseteq\bigcap_{x=1}^{\infty}\left]\frac{-1}{x},1+\frac{1}{x}\right[$ [/mm]

Alle Zahlen kleiner als 0 liegen nicht im Durchschnitt. Das sieht man so:
Sei $y<0$.

[mm] $\Rightarrow\ \exists\varepsilon>0\ [/mm] :\ [mm] y=-\varepsilon$ [/mm]

[mm] $\Rightarrow\ \exists\N\in\IN\ [/mm] :\ [mm] \bruch{1}{N}<\varepsilon$ [/mm] (Archimedisches Axiom)

[mm] $\Rightarrow\ y=-\varepsilon<-\bruch{1}{N}$ [/mm]

[mm] $\Rightarrow\ y\not\in\left]\frac{-1}{x},1+\frac{1}{x}\right[$ [/mm] für $x=N$

[mm] $\Rightarrow\ y\not\bigcap_{x=1}^{\infty}\left]\frac{-1}{x},1+\frac{1}{x}\right[$ $\Box$ [/mm]

Analog kann man für [mm] $y=1+\varepsilon$ [/mm] argumentieren.

Viele Grüße,
Marc

Bezug
                
Bezug
Durchschnitt Intervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Do 31.05.2007
Autor: Wehm

Hallo Marc,
die Frage hatte sich noch nicht erledigt, es freut mich daher sehr dass du noch darauf geantwortet hast. Echt klasse. Danke.

Gruß, Wehm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]