www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDynamisches System
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Dynamisches System
Dynamisches System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dynamisches System: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 22.04.2008
Autor: vicky

Aufgabe
gegeben: diskretes dynamisches System [mm] x_{n+1}=Cx_{n}, x_{i}\in \IR^{2}; C=\pmat{ 1 & 1 \\ -1 & 0 }. [/mm]
gesucht: alle Gleichgewichtspunkte und alle periodischen Orbits

Hallo zusammen,

ich habe leider überhaupt keine Ahnung, wie ich hier vorgehen kann. Meine Aufzeichnungen geben leider auch nicht sehr viel preis. Kann mir hier jemand bitte einen Tipp geben. Ich bin für jede Hilfe sehr dankbar.

Gruß
vicky

        
Bezug
Dynamisches System: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Mi 23.04.2008
Autor: rainerS

Hallo vicky!

> gegeben: diskretes dynamisches System [mm]x_{n+1}=Cx_{n}, x_{i}\in \IR^{2}; C=\pmat{ 1 & 1 \\ -1 & 0 }.[/mm]
>  
> gesucht: alle Gleichgewichtspunkte und alle periodischen
> Orbits
>  Hallo zusammen,
>  
> ich habe leider überhaupt keine Ahnung, wie ich hier
> vorgehen kann. Meine Aufzeichnungen geben leider auch nicht
> sehr viel preis. Kann mir hier jemand bitte einen Tipp
> geben. Ich bin für jede Hilfe sehr dankbar.

Mach dir klar, was Glecihgewichtspunkte sind: Das sind Punkte [mm] $x_G$, [/mm] in denen das System verbleibt, sodaß aus [mm] $x_n=x_G$ [/mm] folgt: [mm] $x_{n+1}=x_G$. [/mm]

Ein Orbit ist die Menge aller Punkte, die das System, ausgehend von einem Anfangspunkt [mm] $x_0$ [/mm] durchläuft. Du beginnst also mit einem [mm] $x_0$ [/mm] und bestimmst alle Punkte [mm] $x_n$, [/mm] die bilden zusammen einen Orbit. Ein periodischer Orbit liegt vor, wenn das System nach einer Anzahl von Schritten zu einem Punkt zurückgeht, den es vorher schon einmal eingenommen hat. Du hast also [mm] $x_k=x_l$ [/mm] für zwei Werte k und l mit [mm] $k\not=l$. [/mm] Welche Bedingung folgt daraus?

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]