E-Statik No. 2 < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:06 Fr 15.06.2012 | Autor: | murmel |
Aufgabe | Gegebene Ladungen [mm] $+Q_0$ [/mm] am Ort $(a,2a,0)$ und [mm] $-Q_0$ [/mm] am Ort $(-a,a,0)$
Wie lautet das Potenzial, das von beiden Ladungen gemeinsam erzeugt wird? Finden Sie alle Punkte für [mm] $\phi\left(\vec r\right) [/mm] = 0$! |
Diese Aufgabe bereitet mir gerade Kopfzerbrechen. Ich arbeite gerade alle Altklausuren als Vorbereitung auf die bevorstehende Klausur durch.
Das Potenzial beider Ladungen ist allgemein:
[mm]
\phi \left(\vec r\right) = \frac{Q_0\,\varrho_0}{4 \pi \varepsilon_0}\left[\frac{1}{\sqrt{\left(x-a\right)^2+\left(y-2a\right)^2}}- \frac{1}{\sqrt{\left(x+a\right)^2+\left(y-a\right)^2}}\right]
[/mm]
Wie soll ich nun alle Punkte (schnell) finden für die das Gesamtpotenzial beider Ladungen Null ist, das scheint etwas arbeitsaufwendig zu sein! Dies war eine Klausuraufgabe.
Für Hilfe danke ich euch!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:00 Fr 15.06.2012 | Autor: | chrisno |
Aus einer Skizze ableiten:
Die Ladungen sind entgegengesetzt gleich groß. Die Potentiale also bei jeweils gleichem Abstand von der Ladung auch. Potentiale addieren sich. Damit haben alle Punkte, die den gleichen Abstand von beiden Ladungen haben das Potential 0. Dies ist die Ebene, die senkrecht auf der Mitte der Verbindung zwischen den beiden Ladungen steht. Also y=-2x+1,5a, z beliebig.
Das passt auch, wenn es in Deinen Ausdruck eingesetzt wird.
Fast genau so schnell geht: Terme unter den wurzeln gleichsetzen, alles was sowieso gleich ist direkt streichen, 2a wegkürzen und schon steht es da.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:08 Fr 15.06.2012 | Autor: | murmel |
Aufgabe | Welche Arbeit muss man verrichten, um eine dritte Ladung [mm] $Q_3 [/mm] = [mm] +Q_0$ [/mm] vom Punkt [mm] $P_1 [/mm] = (a,a,a)$ zum Punkt [mm] $P_2 [/mm] = (a,a,2a)$ zu befördern? [mm] $Q_0$, [/mm] $a$ sind positive Konstanten! |
[Dateianhang nicht öffentlich]
BILD
Magenta und grün dargstellt sind die jeweiligen Ortsvektoren zur Ladung [mm] $Q_3$ [/mm] von den Ladungen [mm] $Q_1,Q_2$, [/mm] wobei [mm] $Q\,'_3$ [/mm] die entgültige Position nach der Verschiebung der dritten Ladung sein soll!
Dann müsste die Arbeit entsprechend
[mm]
W = - \frac{Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_0^1} \frac{\begin{pmatrix}0, -a, a + \alpha \end{pmatrix}}{\left[\sqrt{a^2+ \left(a + \alpha \right)^2}\right]^3} \, \begin{pmatrix}0\\0\\1 \end{pmatrix} \, \mathrm{d}\alpha - \frac{-Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_0^1} \frac{\begin{pmatrix}2a, 0, a + \alpha \end{pmatrix}}{\left[\sqrt{4a^2+ \left(a + \alpha \right)^2}\right]^3}\, \begin{pmatrix}0\\0\\1 \end{pmatrix} \, \mathrm{d}\alpha
[/mm]
Skalar auflösen, mit [mm] $\alpha \in [/mm] [0,a]$, dann müsste jedoch auch [mm] $\alpha \in [/mm] [a,2a]$ möglich sein, so dass der Vektor sich zu Folgendem ändert (und vereinfacht):
[mm]
W = - \frac{Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_a^{2a}} \frac{\begin{pmatrix}0, -a, \alpha \end{pmatrix}}{\left[\sqrt{a^2+ \alpha^2}\right]^3} \, \begin{pmatrix}0\\0\\1 \end{pmatrix} \, \mathrm{d}\alpha - \frac{-Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_a^{2a}} \frac{\begin{pmatrix}2a, 0, \alpha \end{pmatrix}}{\left[\sqrt{4a^2+ \alpha^2}\right]^3}\, \begin{pmatrix}0\\0\\1 \end{pmatrix} \, \mathrm{d}\alpha
[/mm]
[mm]
W = - \frac{Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_a^{2a}} \frac{1}{\left[\sqrt{a^2+ \alpha^2}\right]^3} \,\alpha \, \mathrm{d}\alpha - \frac{-Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_a^{2a}} \frac{1}{\left[\sqrt{4a^2+ \alpha^2}\right]^3}\, \alpha \, \mathrm{d}\alpha
[/mm]
Umgeschrieben:
[mm]
W = - \frac{Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_a^{2a}} \left(a^2+ \alpha^2\right)^{-\frac{3}{2}} \, \alpha \, \mathrm{d}\alpha - \frac{-Q_0^2}{4 \pi \, \varepsilon_0} {\int\limits_a^{2a}} \left(4a^2+ \alpha^2\right)^{-\frac{3}{2}} \, \alpha \, \mathrm{d}\alpha \, \mathrm{d}\alpha
[/mm]
Nach Integration:
[mm]
W = \frac{Q_0^2}{4 \pi \, \varepsilon_0} \left[\left(a^2+ \alpha^2\right)^{-\frac{1}{2}}\right]_a^{2a} - \frac{Q_0^2}{4 \pi \, \varepsilon_0}\left[ \left(4a^2+ \alpha^2\right)^{-\frac{1}{2}}\right]_a^{2a}
[/mm]
[mm]
W = \frac{Q_0^2}{4 \pi \, \varepsilon_0} \left[\left(a^2+ 4a^2\right)^{-\frac{1}{2}} - \left(a^2+ a^2\right)^{-\frac{1}{2}}\right] - \frac{Q_0^2}{4 \pi \, \varepsilon_0}\left[ \left(4a^2+ 4a^2\right)^{-\frac{1}{2}} - \left(4a^2+ a^2\right)^{-\frac{1}{2}}\right]
[/mm]
Vereinfachen:
[mm]
W = \frac{Q_0^2}{4 \pi \, \varepsilon_0} \left[\left(5a^2\right)^{-\frac{1}{2}} - \left(2a^2\right)^{-\frac{1}{2}}\right] - \frac{Q_0^2}{4 \pi \, \varepsilon_0}\left[ \left(8a^2\right)^{-\frac{1}{2}} - \left(5a^2\right)^{-\frac{1}{2}}\right]
[/mm]
[mm]
W = \frac{Q_0^2}{4 \pi \, \varepsilon_0} \left[\left(5a^2\right)^{-\frac{1}{2}} - \left(2a^2\right)^{-\frac{1}{2}}\right] + \frac{Q_0^2}{4 \pi \, \varepsilon_0}\left[ - \left(8a^2\right)^{-\frac{1}{2}} + \left(5a^2\right)^{-\frac{1}{2}}\right]
[/mm]
Umschreiben:
[mm]
W = \frac{Q_0^2}{4 \pi \, \varepsilon_0} \left[\frac{1}{\sqrt{5} a} - \frac{1}{\sqrt{2}a}\right] + \frac{Q_0^2}{4 \pi \, \varepsilon_0}\left[ - \frac{1}{\sqrt{8} a} + \frac{1}{\sqrt{5} a}\right]
[/mm]
[mm]
W = \frac{Q_0^2}{4 \pi \, \varepsilon_0} \left[\underbrace{\frac{1}{\sqrt{5} a} - \frac{1}{\sqrt{2}a}}_{< 0}\right] + \frac{Q_0^2}{4 \pi \, \varepsilon_0}\left[ \underbrace{- \frac{1}{\sqrt{8} a} + \frac{1}{\sqrt{5} a}}_{>0}\right]
[/mm]
Da der größte kleinste Nenner bestimmt den größten Quotientwert der hier negativ ist, damit wird das ganze Ergebnis kleiner Null sein! Damit würde $W<0$, was ja nicht sein darf! Was habe ich falsch gemacht?
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich] Anhang Nr. 2 (Typ: jpeg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:40 Fr 15.06.2012 | Autor: | leduart |
Hallo
deine lange Rechng hab ich nicht angesehen, aber du hast doch das Potential ausgerechnet, also nur Potentialdiffereny an den 2 Punkten *transportierte Ladung
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:57 Fr 15.06.2012 | Autor: | notinX |
Hallo,
> Gegebene Ladungen [mm]+Q_0[/mm] am Ort [mm](a,2a,0)[/mm] und [mm]-Q_0[/mm] am Ort
> [mm](-a,a,0)[/mm]
>
> Wie lautet das Potenzial, das von beiden Ladungen gemeinsam
> erzeugt wird? Finden Sie alle Punkte für [mm]\phi\left(\vec r\right) = 0[/mm]!
>
>
>
>
>
> Diese Aufgabe bereitet mir gerade Kopfzerbrechen. Ich
> arbeite gerade alle Altklausuren als Vorbereitung auf die
> bevorstehende Klausur durch.
>
>
> Das Potenzial beider Ladungen ist allgemein:
> [mm]
\phi \left(\vec r\right) = \frac{Q_0\,\varrho_0}{4 \pi \varepsilon_0}\left[\frac{1}{\sqrt{\left(x-a\right)^2+\left(y-2a\right)^2}}- \frac{1}{\sqrt{\left(x+a\right)^2+\left(y-a\right)^2}}\right]
[/mm]
bist Du sicher, dass das Potential nicht von z abhängt? Das würde ja bedeuten, dass für [mm] $\lim_{z\to\infty}$, [/mm] also [mm] $\lim_{|\vec{r}|\to\infty}$ [/mm] das Potential immer noch eine endliche Größe hat.
>
> Wie soll ich nun alle Punkte (schnell) finden für die das
> Gesamtpotenzial beider Ladungen Null ist, das scheint etwas
> arbeitsaufwendig zu sein! Dies war eine Klausuraufgabe.
>
> Für Hilfe danke ich euch!
Gruß,
notinX
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:29 Fr 15.06.2012 | Autor: | murmel |
Entschuldige! Es muss dann heißen:
[mm]
\phi \left(\vec r\right) = \frac{Q_0\,\varrho_0}{4 \pi \varepsilon_0}\left[\frac{1}{\sqrt{\left(x-a\right)^2+\left(y-2a\right)^2+z^2}}- \frac{1}{\sqrt{\left(x+a\right)^2+\left(y-a\right)^2 +z^2}}\right]
[/mm]
|
|
|
|