www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenEbene im R³
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Ebene im R³
Ebene im R³ < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene im R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Mo 26.06.2006
Autor: beatbulette

Aufgabe
Bestimme den Punkt der Ebene E:  [mm] \vec{e}= \vektor{0.5 \\ 2.5 \\ 14}+ \lambda \vektor{-1 \\ 1 \\ 3}+ \mu \vektor{-1.5 \\ -1.5 \\ 8} [/mm] der auf der z- Achse liegt.

Wenn ein Vektor auf der z-Achse liegt müssen der x und y-Wert doch null sein.
Das müsste heißen der Vektor wäre  [mm] \vektor{0 \\ 0 \\ z}. [/mm]
Allerdings weiß ich jetzt nicht, wie ich die Aufgabe rechne und die Überlegung in die Aufgabe einbringe.
Wär nett, wenn mir jemand weiterhelfen könnte.
Lg Doro

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ebene im R³: Einfach ...
Status: (Antwort) fertig Status 
Datum: 16:12 Mo 26.06.2006
Autor: statler

Hallo Dorothea!

> Bestimme den Punkt der Ebene E:  [mm]\vec{e}= \vektor{0.5 \\ 2.5 \\ 14}+ \lambda \vektor{-1 \\ 1 \\ 3}+ \mu \vektor{-1.5 \\ -1.5 \\ 8}[/mm]
> der auf der z- Achse liegt.
>  Wenn ein Vektor auf der z-Achse liegt müssen der x und
> y-Wert doch null sein.
>  Das müsste heißen der Vektor wäre  [mm]\vektor{0 \\ 0 \\ z}.[/mm]
>  
> Allerdings weiß ich jetzt nicht, wie ich die Aufgabe rechne
> und die Überlegung in die Aufgabe einbringe.

Für die beiden ersten Komponenten des Vektors kannst du jetzt eine Gleichung mit Zahlen und den beiden Unbekannten [mm] \lambda [/mm] und [mm] \mu [/mm] hinschreiben (und dann auch lösen).

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Ebene im R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 26.06.2006
Autor: beatbulette

Das verstehe ich irgendwie noch nicht ganz...
Sind die beiden ersten Komponenten die x und y- Werte der Vektoren?
Und wie kann ich in diese Komponenten  Gleichungen mit [mm] \lambda [/mm] und [mm] \mu [/mm] schreiben?
Gruß Doro

Bezug
                        
Bezug
Ebene im R³: Mach es so!
Status: (Antwort) fertig Status 
Datum: 16:26 Mo 26.06.2006
Autor: statler

Aufgabe
Bestimme den Punkt der Ebene E:  [mm] \vec{e}= \vektor{0.5 \\ 2.5 \\ 14}+ \lambda \vektor{-1 \\ 1 \\ 3}+ \mu \vektor{-1.5 \\ -1.5 \\ 8} [/mm] der auf der z- Achse liegt.


Gleichung Nr. 1:

0,5 + [mm] \lambda [/mm] (-1) + [mm] \mu [/mm] (-1,5) = 0

Rat mal die zweite ...

Dieter

Bezug
                                
Bezug
Ebene im R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 26.06.2006
Autor: beatbulette

Also dann ist die zweite [mm] 2.5+\lambda-1.5\mu=O [/mm]
Kann ich dann für die dritte auch einfach
[mm] 14+3\lambda+8\mu=0 [/mm] schreiben und [mm] \lambda [/mm] und [mm] \mu [/mm] ausrechnen ?
Weil der z-Wert ja nicht null sein muss und darf...?
Gruß Doro

Bezug
                                        
Bezug
Ebene im R³: Neeee!
Status: (Antwort) fertig Status 
Datum: 16:38 Mo 26.06.2006
Autor: statler

Mit der 3. rechnest du dann den z-Wert aus!

Dieter


Bezug
                                                
Bezug
Ebene im R³: richtige Antwort?
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 26.06.2006
Autor: beatbulette

Also wenn ich jetzt die beiden Gleichungen habe kann ich ja [mm] \lambda [/mm] und [mm] \mu [/mm] ausrechnen...
Bei mir ist [mm] \lambda=-1 [/mm] und [mm] \mu=1 [/mm]
Kann ich das dann einfach in die dritte Gleichung einsetzen? Dann wäre z bei mir 19 und der Punkt läge bei P(0/0/19)?
Ist das richtig?
Doro

Bezug
                                                        
Bezug
Ebene im R³: Super!
Status: (Antwort) fertig Status 
Datum: 16:48 Mo 26.06.2006
Autor: statler

Der Weg ist jedenfalls richtig, ich mach jetzt Feierabend (und gebe noch etwas Nachhilfe)
Dieter


Bezug
                                                                
Bezug
Ebene im R³: dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mo 26.06.2006
Autor: beatbulette

Dann danke nochmal für die Hilfe!
Lg Doro

Bezug
                                                        
Bezug
Ebene im R³: Zahlenwerte auch ok!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 26.06.2006
Autor: Roadrunner

Hallo Doro!


Auch die Zahlenwerte stimmen (nicht nur der Weg ;-) ...) [ok] !


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]