www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungEbenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Ebenen
Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 So 22.08.2004
Autor: baerchen

Hallo Ihr,

wie bekomme ich heraus, welche die 1., die 2. und die 3. Ebene bei einem Gebäude (im Koordinatensystem mit 3 Achsen, wobei die 1. Achse nach links geht, die zweite nach rechts und die 3. nach oben) ist?

Ich glaube die erste ist alles, was ein "normales" Viereck ist. Die zweite die Striche nach hinten, die dann wiederum ein Vierreck bilden, wenn man sie verbindet und die dritte alles, was ein nach hinten geschobenes Viereck ist. Ich bin mir da aber höchst unsicher.
Gibt es dann auch Punkte, die in keiner der drei Ebenen liegen? Ich denke da an Punkte, die mitten auf einer Strecke liegen und mit keiner anderen Strecke irgendetwas bilden.

Über Hilfe würde ich mich freuen.

        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 22.08.2004
Autor: nitro1185

Hallo!!

Also ich weiß nicht genau wie du das meinst. Viell. stelle ich mir das zu leicht vor, aber die ebenen sind jene:

1. Die Ebene, die die x und y-Achse miteinander einschließen!
2. Die Ebene, die die x und z-Achse miteinander einschließen!
3. -//-                         y und z -Achse -//-

Für die bestimmung einer ebene sind  1 Punkt und 2 Richtungsvektoren notwendig!!Oder du stellst die ebene in allg. form auf!!

ax+by+cz=d  

viell. konnte ich dir helfen! Gruß daniel

Bezug
        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Di 07.09.2004
Autor: DerMathematiker

Hallo Baerchen,

also mir ist es auch etwas unklar was du nun genau meinst.

Aber ich fass mal zusammen

Die x1-x2-Ebene ist die Ebene in einem Raum die sich Boden nennt, also die x1-x2 Ebene liegt sozusagen auf dem Boden, um es nicht mathematisch auszudrücken oder etwas mathematischer. Die x1-x2 Ebene ist die Ebene, die die x1- und x2Achse einschließen.

Genauso ist es mit der x2-x3 Ebene, dies ist die Hinterwand unseres Raumes und die x1-x3 Ebene ist die Seitenwand in unserem Raum...hast du es nun etwas besser verstanden? Also nimm dir mal eine Ecke in deinem Zimmer. Dann ist die x3-Achse die vertikale(senkrechte) Ecke die x2-Achse ist die rechte Ecke auf dem Boden oder an der Decke, ist ja das selbe und die x1-Achse ist die linke Ecke des Bodens bzw. der Decke....hast du es nun besser verstanden? Du kannst dir also deinen Raum als Vektorraum denken und nun kannst du bestimmte grafische Aufgaben besser lösen, da du dir das ganze immer im Kopf klar machen kannst.

Ich hoffe ich konnte dir helfen.

MfG DerMathematiker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]