www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEbenen in Koordinatendarstellu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Ebenen in Koordinatendarstellu
Ebenen in Koordinatendarstellu < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen in Koordinatendarstellu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 18.10.2016
Autor: Jura86

Aufgabe
Geben Sie folgende Ebenen in Koordinatenform an:

Guten Tag !

Ich habe hier eine Aufgabe gelöst, und würde gerne jemanden bitte kurz zu schauen ob ich das richtig gemacht habe.



Das sind die Werte die uns gegeben wurden:
E:= [mm] \begin{pmatrix} 1 \\ 3/4 \\ -1/3 \end{pmatrix} [/mm] + [mm] \mathbb [/mm] R [mm] \begin{pmatrix} 1 \\ -1/2 \\ F \end{pmatrix} +\mathbb [/mm] R [mm] \begin{pmatrix} 2 \\ 1 \\ -2\end{pmatrix} [/mm]




Ich habe die Ebene in eine “Matrixform” umgewandelt und vereinfacht
[mm] \begin{vmatrix} 1 & 1 & 2 \\ 3/4 & -1/2 & 1 \\ -1/3 & 1/3 & -2 \end{vmatrix} [/mm]


[mm] \begin{vmatrix} 1 & 1 & 2 \\ -3/2 & 1 & -2 \\ -1 & 1 & -6 \end{vmatrix} [/mm]






Hier habe ich [mm] \lambda [/mm]  elemeniert

III - II =   1    0   -16

II - II  =  -5   0    -8

-10  [mm] -16\mu [/mm]
[mm] -1+16\mu [/mm]

Hier habe ich alles in Zeilenform gebracht

[mm] -1\cdot (X_{3} [/mm] - [mm] X_{2})+ 2\cdot (X_{2} [/mm] - [mm] X_{1}) [/mm] = -20+1

Dann habe ich es ausgerechnet und habe folgendes Ergebnis raus

[mm] E:=\left\{ \begin{pmatrix} \\ y \\ z \end{pmatrix}\in \mathbb R ^3 |2x+3y-z=-19\right\} [/mm]

Ist das soweit okay oder ist es völlig falsch ?
Wenn es falsch ist,
kann mir dann jemad die Schritte Zeigen die zum Ergebniss führen ?

Vielen Dank in Voraus!!

        
Bezug
Ebenen in Koordinatendarstellu: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Di 18.10.2016
Autor: abakus

Wenn das richtig wäre, müssten die Koordinaten deines bekannten Ebenenpunktes in die Gleichung passen...

Warum berechnest du nicht den Normalenvektor mit dem Kreuzprodukt der Spannvektoren?

Bezug
        
Bezug
Ebenen in Koordinatendarstellu: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 18.10.2016
Autor: abakus


> III - II =   1    0   -16

Nebenbei: Du hast nicht nur III-II gerechnet, sondern das Ergebnis hinterher noch verdoppelt.
Die -16 ist falsch.

Bezug
        
Bezug
Ebenen in Koordinatendarstellu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Do 20.10.2016
Autor: Jura86

Hallo Abakus !
Erstmal danke für deine Antwort !

ich habe das so auf einem You Tube Video gesehen, deshalb habe ich das so gerechnet. dann bekomme ich ja ein Vector raus.
ich habe das mal schnell durchgerechnet und habe  [mm] \vektor{\bruch{2}{3}x\\\bruch{8}{3}\\2}. [/mm] raus.

Und wie schreibe ich das jetzt in Kordinatenform um ?
kann ich die Werte so übernehmen ?

[mm] E:=\left\{ \begin{pmatrix} \\ y \\ z \end{pmatrix}\in \mathbb R ^3 |\bruch{2}{3}x+\bruch{8}{3}y+2z=-19\right\} [/mm]

Bezug
                
Bezug
Ebenen in Koordinatendarstellu: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Do 20.10.2016
Autor: abakus

Hallo,
ein Punkt deiner Ebene war ( 1 | 3/4 | -1/3).
Wenn Du diese Koordinaten einsetzt, kommt niemals -19 raus.
Deine Ebenengleichung ist also falsch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]