www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Ebenengleichung
Ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Do 27.03.2008
Autor: headbanger

Aufgabe
g: [mm] \vec{x} [/mm] = [mm] \pmat{ 1 & 2 &1 } [/mm] + t [mm] \pmat{-2 & 6 & 2 } [/mm]

h: [mm] \vec{x} [/mm] = [mm] \pmat{ 1 & 0&1 } [/mm] + s [mm] \pmat{1 & -3 &-1} [/mm]

Begründen sie dass die Geraden in einer Ebene liegen. Geben sie eine Koordinatengleichung von E  an.

Ich hab bewiesen, dass die Richtungsvektoren linear abhängig sind.

dann habe ich den Stützpunkt von g mit h gleichgesetzt um zu beweisen, dass P nicht auf h liegt.

ich weiß allerdings nicht, wie man das LGS auswertet. ich habe für [mm] s_{1}=0, s_{2}=- [/mm] /bruch{2}{3} und [mm] s_{3}=0 [/mm]

wie lese ich das - was heißt das auf deutsch =)?

ich weiß nur, dass der punkt P nicht auf h liegt

--> beide Geraden liegen in einer Ebene.

dann die Richtungsvektoren aufgespannt:

einmal einer der Geraden --> sie sind ja l.u.

[mm] \pmat{1 & -3 &-1} [/mm]

und der Verbindungsvektor der Stützvektoren
[mm] \pmat{0 & 2 & 0} [/mm]

dann den normalenvektor ausgerechnet

--> die beiden oberen vektoren = 0

--> LGS

[mm] n_{1} [/mm] = 1, [mm] n_{2} [/mm] = 0 [mm] n_{3}=1 [/mm]

--> n= [mm] \pmat{1 & 0 &-1} [/mm]

ich weiß: Rohform einer Ebene sieht so aus:

[mm] x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{3} [/mm] = c

--> Vorfaktor von jedem "x" = Normalenordinate

--> [mm] x_{1}+ x_{3} [/mm] = c

dann weiß ich nicht mehr weiter.

die Lösung schlägt vor einfach einen den Punkt [mm] \pmat{ 1 & 2 &1 } [/mm] in die Gleichung einzusetzen.

--> Punkt ist ja in der Ebene --> Stützvektor

aber

dann hab ich laut Lösung

[mm] x_{1}- x_{3} [/mm] = 2

wie letze ich den Punkt ein?

und wieso steht da plötzlich ein Minus vor [mm] x_{3}? [/mm]

viele Grüße
Headbanger =)

        
Bezug
Ebenengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Do 27.03.2008
Autor: headbanger

Das mit dem Minus hab ich verstanden - hab  aus versehen statt "-1" in [mm] x_{3} [/mm] "+1" eingesetzt - deswegen auch das andere Ergebnis in der Lösung

Bezug
        
Bezug
Ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Do 27.03.2008
Autor: MathePower

Hallo headbanger,

> g: [mm]\vec{x}[/mm] = [mm]\pmat{ 1 & 2 &1 }[/mm] + t [mm]\pmat{-2 & 6 & 2 }[/mm]
>  
> h: [mm]\vec{x}[/mm] = [mm]\pmat{ 1 & 0&1 }[/mm] + s [mm]\pmat{1 & -3 &-1}[/mm]
>  
> Begründen sie dass die Geraden in einer Ebene liegen. Geben
> sie eine Koordinatengleichung von E  an.
>  Ich hab bewiesen, dass die Richtungsvektoren linear
> abhängig sind.

[ok]

>  
> dann habe ich den Stützpunkt von g mit h gleichgesetzt um
> zu beweisen, dass P nicht auf h liegt.
>  
> ich weiß allerdings nicht, wie man das LGS auswertet. ich
> habe für [mm]s_{1}=0, s_{2}=-[/mm] /bruch{2}{3} und [mm]s_{3}=0[/mm]

>
> wie lese ich das - was heißt das auf deutsch =)?


Da [mm]s_{1}=s_{3} \not= s_{2}[/mm]  liegt der Stützpunkt von g nicht auf der Geraden h.

Gilt dagegen [mm]s_{1}=s_{2}=s_{3}[/mm] so liegt der Stützpunkt von g auf der Geraden h.


>  
> ich weiß nur, dass der punkt P nicht auf h liegt
>
> --> beide Geraden liegen in einer Ebene.
>  
> dann die Richtungsvektoren aufgespannt:
>  
> einmal einer der Geraden --> sie sind ja l.u.
>  
> [mm]\pmat{1 & -3 &-1}[/mm]

Das ist der Richtungsvektor der Geraden h

>  
> und der Verbindungsvektor der Stützvektoren
>   [mm]\pmat{0 & 2 & 0}[/mm]

Stützvektor von g minus Stützvektor von h

>  
> dann den normalenvektor ausgerechnet
>
> --> die beiden oberen vektoren = 0
>
> --> LGS
>  
> [mm]n_{1}[/mm] = 1, [mm]n_{2}[/mm] = 0 [mm]n_{3}=1[/mm]
>  
> --> n= [mm]\pmat{1 & 0 &-1}[/mm]


Da hat sich ein Vorzeichenfehler eingeschlichen:

[mm]n= \pmat{1 & 0 & \red{+}1}[/mm]


>  
> ich weiß: Rohform einer Ebene sieht so aus:
>  
> [mm]x_{1}[/mm] + [mm]x_{2}[/mm] + [mm]x_{3}[/mm] = c
>  
> --> Vorfaktor von jedem "x" = Normalenordinate
>  
> --> [mm]x_{1}+ x_{3}[/mm] = c
>  
> dann weiß ich nicht mehr weiter.
>  
> die Lösung schlägt vor einfach einen den Punkt [mm]\pmat{ 1 & 2 &1 }[/mm]
> in die Gleichung einzusetzen.
>
> --> Punkt ist ja in der Ebene --> Stützvektor
>  
> aber
>  
> dann hab ich laut Lösung
>
> [mm]x_{1}- x_{3}[/mm] = 2
>  
> wie letze ich den Punkt ein?

Da Du von der Geraden h ausgehend, die Ebene gebildet hast, ist hier auch der Punkt [mm]\pmat{1 \\ 0 \\ 1}[/mm] in die Ebenengleichung einzusetzen.

Die Ebenengleichung läßt sich auch so schreiben:

[mm]\left(\overrightarrow{x}-\pmat{1 \\ 0 \\ 1}\right) \* \pmat{1 \\ 0 \\ 1}=0[/mm]

>  
> und wieso steht da plötzlich ein Minus vor [mm]x_{3}?[/mm]

n= [mm]\pmat{1 & 0 &-1}[/mm],


Wie schon erwähnt, da hat sich ein Vorzeichenfehler bei der Berechnung des Normalenvektors eingeschlichen.


>  
> viele Grüße
>  Headbanger =)

Gruß
MathePower

Bezug
                
Bezug
Ebenengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Do 27.03.2008
Autor: headbanger

vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]