Ebenengleichung an Kugeln < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:40 So 02.09.2007 | Autor: | johnston |
Aufgabe | Drei Kugeln K1, K2, K3 berühren eine Ebene E jeweils in einem Punkt. K1 im Punkt p1 (2,1,0), k2 in p2(2,8,0) und k3 in p3(6 1/3,2,0).
Für die Radien gilt r1=1 , r2=2, r3=3 .
Bestimme eine zweite Ebene E`welche ebenfalls die Kugeln K1,K2 und K3 berührt. |
ich schreibe morgen eine LK Klausur, und habe keine Ahnung was für einen Ansatz ich bei solch einer aufgabe verwenden muss.
Wie komme ich auf die zweite Ebene?
ich hoffe es kann mir schnell jemand helfen!
Danke :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fehlerhaft | Datum: | 17:54 So 02.09.2007 | Autor: | Somebody |
> Drei Kugeln K1, K2, K3 berühren eine Ebene E jeweils in
> einem Punkt. K1 im Punkt p1 (2,1,0), k2 in p2(2,8,0) und k3
> in p3(6 1/3,2,0).
> Für die Radien gilt r1=1 , r2=2, r3=3 .
> Bestimme eine zweite Ebene E'welche ebenfalls die Kugeln
> K1,K2 und K3 berührt.
Ich denke, dass die Lösung nicht eindeutig bestimmt ist, weil uns nicht gesagt wird, in welchem durch die Ebene $E$ (durch die drei Berührpunkte [mm] $P_{1,2,3}$ [/mm] mit dem Kugeln) definierten Halbraum die drei Kugeln liegen. Die Aufgabe hat also, meiner Meinung nach, zwei mögliche Lösungen (weil diese Information über die relative Lage der drei Kugeln zur Ebene $E$ durch [mm] $P_{1,2,3}$ [/mm] fehlt).
Aber von der Grundidee her wird man folgendes machen müssen: Der Berührradius jeder Kugel steht senkrecht auf der Ebene $E$. Wenn man nun einen zur Ebene $E$ normalen Vektor der Länge $=$ Durchmesser der Kugel [mm] $K_1,K_2,$ [/mm] bzw. [mm] $K_3$ [/mm] zum Ortsvektor von [mm] $P_1, P_2$ [/mm] bzw. [mm] $P_3$ [/mm] addiert, dann erhält man einen diametral entgegengesetzt auf der jeweiligen Kugel liegenden Punkt, den man als Berührpunkt einer zweiten Ebene verwenden kann, die ebenfalls alle drei Kugeln berührt. (Einziges Problem ist, wie gesagt, dass nicht klar ist, welchen Richtungssinn der zu addierende Normalenvektor von $E$ haben muss, weil nicht klar ist, in welchem Halbraum bezüglich $E$ die drei Kugeln liegen.)
Man kann diese Konstruktion auch so erklären: die zweite Ebene, die die drei Kugeln berührt, geht aus $E$ durch Spiegelung an der Ebene durch die drei Kugelmittelpunke hervor.
|
|
|
|
|
Status: |
(Korrektur) fundamentaler Fehler | Datum: | 18:22 So 02.09.2007 | Autor: | leduart |
Hallo
Das mit dem diametral gegenüberliegenden Punkt ist falsch, das wäre nur richtig, wenn alle Kreise denselben Radius hätten.
Die Kreise berühren alle in Punkten der xy-Ebene (z=0)
d,h. ihre Mittelpunkte haben einfach noch die z-Koordinate r.
Legt man jetzt eine Ebene durch die 3 Mittelpunkte, dann bildet die eine Symmetrieebene, wenn man also die erste Ebene=xy-Ebene an dieser Mittelpktsebene spiegelt hat man die gesuchte zweite Tangentialebene.
veranschaulichen vielleicht anhand von 3 Kreisen mit versch. Radius, die die x-Achs berühren, dann findet man die entspr. zweite Tangente entsprechend.
Das einzige Kunststück ist also a) Gleichung der Mittelpunktsebene gegeben durch 3 Punkte,
b) Spiegelung an dieser Ebene .
Gruss leduaart.
|
|
|
|
|
Status: |
(Korrektur) oberflächlich richtig | Datum: | 18:34 So 02.09.2007 | Autor: | Somebody |
> Hallo
> Das mit dem diametral gegenüberliegenden Punkt ist falsch,
> das wäre nur richtig, wenn alle Kreise denselben Radius
> hätten.
> Die Kreise berühren alle in Punkten der xy-Ebene (z=0)
> d,h. ihre Mittelpunkte haben einfach noch die z-Koordinate
> r.
> Legt man jetzt eine Ebene durch die 3 Mittelpunkte, dann
> bildet die eine Symmetrieebene, wenn man also die erste
> Ebene=xy-Ebene an dieser Mittelpktsebene spiegelt hat man
> die gesuchte zweite Tangentialebene.
> veranschaulichen vielleicht anhand von 3 Kreisen mit
> versch. Radius, die die x-Achs berühren, dann findet man
> die entspr. zweite Tangente entsprechend.
> Das einzige Kunststück ist also a) Gleichung der
> Mittelpunktsebene gegeben durch 3 Punkte,
> b) Spiegelung an dieser Ebene .
Du hast natürlich recht: wie immer. Wenigstens habe ich am Ende meiner Antwort den richtigen Lösungsweg (Spiegelung von $E$ an der Ebene durch die Kugelmittelpunkte) auch hingeschrieben, aber leider den Widerspruch zum zuerst vorgeschlagenen Vorgehen mit dem Normalenvektoren nicht gesehen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:14 So 02.09.2007 | Autor: | johnston |
Danke für den Lösungsansatz!
Der mit der Ebene durch die Kugelmittelpunkte war der richtige :)
Vielen Dank für die schnelle Hilfe.
|
|
|
|