www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Eigenraum
Eigenraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 14.02.2008
Autor: domenigge135

Hallo ich habe folgendes Problem. Also gegeben ist der Vektor [mm] u=\vektor{4 \\ -3}. [/mm]
Ich sollte nun eine Householder Transformation machen, welches mich auf folgendes Ergebnis gebracht hat: [mm] \vmat{ -\bruch{7}{25} & \bruch{25}{25} \\ \bruch{24}{25} & \bruch{7}{25} }. [/mm]
Nun sollte ich die Eigenwerte berechnen. Diese sind: [mm] x_1=1 [/mm] und [mm] x_2=-1. [/mm]
Als nächstes brauchte ich die Eigenvektoren. Es wäre nun net, wenn ihr folgenden Weg auf richtigkeit überprüfen bzw. ergänzen könntet.
ich setze zunächst meinen Eigenwert [mm] x_1=1 [/mm] in [mm] \vmat{ -\bruch{7}{25}-x & \bruch{25}{25} \\ \bruch{24}{25} & \bruch{7}{25}-x } [/mm] ein und bringe in NZSF.
Ich erhalte: [mm] \vmat{ 1 & -\bruch{3}{4} \\ 0 & 0 }. [/mm]
Nun schreibe ich [mm] x_1-\bruch{3}{4}x_2=0. [/mm]
Da [mm] x_1 [/mm] Kopfvariable ist, drücke ich diese durch die nicht kopfvariable [mm] -\bruch{3}{4}x_2 [/mm] aus.
Ich erhalte: [mm] x_1=\bruch{3}{4}x_2. [/mm]
Außerdem setze ich [mm] x_2=s [/mm] für s [mm] \in \IR. [/mm]
Also steht dort jetzt [mm] x_1=\bruch{3}{4}s. [/mm]
Ich schreibe nun, da ich ja eigentlich den Kern berechnet habe:
Ker={ [mm] s\vektor{\bruch{3}{4} \\ 1}|s \in \IR [/mm] }.
Somit erhalte ich zu dem Eigenwert [mm] x_1=1 [/mm] den Eigenvektor [mm] \vektor{\bruch{3}{4} \\ 1} [/mm]

Was sagt ihr dazu??? Wäre das so in Ordnung??? Denn wenn ich das bei arndt- bruenner eingebe, ermittelt der mir als Eigenvektor zu 1 [mm] \vektor{3 \\ 4} [/mm]

Wie dem auch sei wäre ich jetzt auch so zum Eingenwert [mm] x_2=-1 [/mm] vorgegangen.

        
Bezug
Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Do 14.02.2008
Autor: schachuzipus

Hallo domenigge,

du hast einen kleinen Schreibfehler beim Eintrag [mm] $a_{12}$ [/mm] deiner H-Matrix.

Da muss [mm] $\frac{\red{24}}{25}$ [/mm] stehen, das benutzt du auch in deiner weiteren Rechnung, ist also nur ein Typo ;-)

Den Rest hast du richtig berechnet.

Bedenke, dass ein Eigenvektor ja nur irgendein Vektor [mm] \neq [/mm] 0 aus dem Kern ist.

Den Kern hast du richtig berechnet als Spann von [mm] $\vektor{\frac{3}{4}\\1}$, [/mm] also [mm] $\langle\vektor{\frac{3}{4}\\1}\rangle$ [/mm]

Also alle skalaren Vielfachen von [mm] $\vektor{\frac{3}{4}\\1}$, [/mm] das hast du ja auch richtig hingeschrieben, also ist auch das s=4-fache deines EV ein EV zum EW $x=1$ ...  ;-)

Ob du also deinen EV oder das 4-fache davon, also [mm] $\vektor{3\\4}$ [/mm] nimmst, ist deiner Wahl überlassen, beides stimmt jedenfalls


Dein Vorgehen ist also absolut richtig [ok]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]