www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisEigenschaft einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Eigenschaft einer Funktion
Eigenschaft einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaft einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 So 22.01.2006
Autor: Timowob

Aufgabe
Genau welche Eigenschaft besitzt eine Funktion f: [0;1]->[0;1] mit f(0)=0, wenn für jede Nullfolge [mm] (x_k) [/mm] im Intervall [0;1] gerade [mm] f(x_k) \overrightarrow{k \overrightarrow{ \infty}} [/mm] erfüllt ist?

Hallo,

ich denke die Funktion ist stetig, weil:

f(0)=0 und [mm] \limes_{k\rightarrow\infty} f(x_k)=0 [/mm]

Stimmt das?

Liebe Grüße

Timo

        
Bezug
Eigenschaft einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 So 22.01.2006
Autor: Stefan

Hallo Timo!

Die Funktion ist stetig in [mm] $\red{x=0}$, [/mm] ja.

Mehr kann man nicht aussagen.

Die Funktion "ist stetig" würde bedeuten, dass sie in jedem Punkt ihres Definitionsbereiches stetig ist.

Liebe Grüße
Stefan

Bezug
                
Bezug
Eigenschaft einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 So 22.01.2006
Autor: Timowob

Hallo Stefan,

vielen Dank für Deine Antwort.

Woran erkennst Du denn, daß die Funktion stetig ist?

Viele Grüße

Timo

Bezug
                        
Bezug
Eigenschaft einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 22.01.2006
Autor: leduart

Hallo Timo
Es ist die DEFINITION der Stetigkeit in einem Punkt. Es sei denn ihr habt nur die [mm] \varepsilon [/mm] - [mm] \delta [/mm] Definition benutzt, und nicht die Äquivalenz der 2 Def. (einmal über Folgen und einmal über [mm] \varepsilon [/mm] - [mm] \delta) [/mm] bewiesen. Dann musst dus hier noch nach [mm] \varepsilon [/mm] - [mm] \delta [/mm]  beweisen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]