www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisEigenschaften von Polynomf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Eigenschaften von Polynomf.
Eigenschaften von Polynomf. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von Polynomf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 So 02.07.2006
Autor: yvkiv

Hallo ihr lieben!

ich habe einige Unklarheiten in meinen Unterlagen gefunden und stehe aber vor der mündlichen Prüfung, bei welcher Grundsätze die Heuptaufgaben sind.
Und zwar gibt es eigenschaften der Funktionen das zum Beispiel:

-  Wo  Gf " seine Nullstellen hat, hat Gf ' seine Extrempunkte und Gf seine Wendepunkte.

- wo Gf ' seine Nullstellen hat, hat Gf seine Extrempunkte
- wo Gf ' seine Extrempunkte hat, hat Gf seine Wendepunkt.

Ich habe diese Aussagen aber alle Unterschiedlich in meinen Unterlagen stehen! Ich wäre euch sehr dankbar wenn ihr mir diese Arten von Eigenschaften Der Funktion in ihrer Richtigkeit schreiben könnt,
damit ich meine mündliche Prüfung auch gut bestehe :-)

danke liebe grüße yvonne



        
Bezug
Eigenschaften von Polynomf.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 02.07.2006
Autor: shark4

hallo yvonne,

soweit ich das beurteilen kann stimmen allen genannten aussagen.

wenn du eine kurvendiskussion machst gehst du doch folgendermaßen vor:
- du bestimmst die nst (nullstellen) der funktion [mm] f [/mm]
- du leitest die funktion ab und bestimmst die nst von [mm] f' [/mm] welche ja gleichzeitig die extrema oder wendepunkt von [mm] f [/mm] sind, denn man weis ja das [mm] f' [/mm] den anstieg von [mm] f [/mm] angibt, d.h. wo [mm] f'=0 [/mm] ist, ist bei [mm] f [/mm] der anstieg 0 und somit ein extrema bzw. ein wendepunkt. ob es sich nun um ein extrema handelt oder nicht zeigt meistens die zweite ableitung. ist [mm] f''(x_E)>0 [/mm] liegt an der stelle [mm] x_E [/mm] ein minimum, bei [mm] f''(x_E)<0 [/mm] folgt daraus ein maximum an der stelle [mm] x_E [/mm]. sollte [mm] f''(x_E)=0 [/mm] sein handelt es sich wahrscheinlich um ein wendepunkt.

um jetzt auf die aussagen zu kommen: grundsätzlich stimmen sie ich würde sie nur in anderer richtung lesen.
wo [mm] f [/mm] wendepunkt hat, hat [mm] f' [/mm] extrema und [mm] f'' [/mm] nullstelle.

nehmen wir nämlich mal als beispielfunktion: [mm] f(x) = x^4 [/mm], als ableitungen sollte man eigentlich ;-) auf [mm] f'(x) = 4x^3 [/mm] und [mm] f''(x) = 12x^2 [/mm] kommen. [mm] f''(x) = 12x^2 = 0 \Rightarrow x = 0 [/mm]. laut der aussage in deinem hefter müsste denmach bei [mm] f(0) [/mm] ein wendepunkt sein, wie du aber wissen solltest hat [mm] f(x) = x^4 [/mm] kein wendepunkt, sondern nur ein minimum.

ich hoffe ich konnte dir ein wenig helfen und dich nicht weiter verwirren, falls du etwas nicht richtig verstanden hast, frag lieber noch mal nach!

mfg chris

Bezug
                
Bezug
Eigenschaften von Polynomf.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 So 02.07.2006
Autor: yvkiv

Stimmt chris da könntest du recht haben! :-)

auf jeden fall vielen lieben Dank, werd das nun nochmal in ruhe durchgehen!

gruß yvonne

Bezug
        
Bezug
Eigenschaften von Polynomf.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 02.07.2006
Autor: Funky24

hi...

...mir hat es auch geholfen, dass Ganze mal bildlich vor mir zu sehen, um es zu verstehen...

...mal am besten eine Funktion und deren 3 Ableitungen in ein und dasselbe Koordinatensystem, dann wird dir sicher einiges klarer...

Gruß Funky

Bezug
        
Bezug
Eigenschaften von Polynomf.: FunkyPlot
Status: (Antwort) fertig Status 
Datum: 22:32 Mo 03.07.2006
Autor: informix

Hallo yvkiv und [willkommenmr].
> Hallo ihr lieben!
>  
> ich habe einige Unklarheiten in meinen Unterlagen gefunden
> und stehe aber vor der mündlichen Prüfung, bei welcher
> Grundsätze die Hauptaufgaben sind.
>  Und zwar gibt es eigenschaften der Funktionen das zum
> Beispiel:
>  
> -  Wo  Gf " seine Nullstellen hat, hat Gf ' seine
> Extrempunkte und Gf seine Wendepunkte.
>  
> - wo Gf ' seine Nullstellen hat, hat Gf seine Extrempunkte
>  - wo Gf ' seine Extrempunkte hat, hat Gf seine
> Wendepunkt.
>  

[Dateianhang nicht öffentlich]

Schau dir die Graphen mal genau an:
wenn f Extremstellen hat, hat f' dort Nullstellen, ...

Graphik erstellt mit []FunkyPlot.

Jetzt klar(er)?

Gruß informix


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]