www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Eigenvektoren
Eigenvektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:37 Mi 31.05.2006
Autor: Mikke

Hallo brauche einmal hilfe bei der berechnung von Eigenvektoren, weil die brauche ich um weiter zu rechnen...
also meine Matrix ist:
[mm] \pmat{ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 }. [/mm]

Die Eigenwerte müssten ja dann hierzu 3, 3, 0 sein. oder?
Könnt ihm jetzt einmal sagen wie die beiden Eigenvektoren zum Eigenwert 3 sind und wie der zu 0 ist?
danke schon mal
MfG Mikke [mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm]

        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mi 31.05.2006
Autor: Herby

Hallo Mikke,


> Hallo brauche einmal hilfe bei der berechnung von
> Eigenvektoren, weil die brauche ich um weiter zu
> rechnen...
>  also meine Matrix ist:
>   [mm]\pmat{ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 }.[/mm]
>  
> Die Eigenwerte müssten ja dann hierzu 3, 3, 0 sein. oder?

nein, du musst dich hier verrechnet haben, die Eigenwerte lauten anders.

die Eigenwerte werden bestimmt mit: [mm] det(A-\lambda*E)=p(\lambda) [/mm]

und davon ermittelst du die Nullstellen :-)

>  Könnt ihm jetzt einmal sagen wie die beiden Eigenvektoren
> zum Eigenwert 3 sind und wie der zu 0 ist?

wenn du die Werte hast, dann werden sie in die Matrix [mm] (A-\lambda*E) [/mm]
eingesetzt und das Gleichungsystem gelöst.

Zum Schluss dann noch normieren.


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]