www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren berechnen
Eigenvektoren berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 28.04.2011
Autor: zoj

Aufgabe
Gesucht sind die Eigenvektoren zu der Matrix:
A = [mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm]

Laut lösung soll für [mm] \lambda [/mm] = -1 der Eigenvektor [mm] x_{2} [/mm] = [mm] \bruch{1}{\wurzel{2}}*\vektor{1\\-1} [/mm] rauskommen
Ich bekomme aber den Vektor: [mm] x_{2} [/mm] = [mm] \bruch{1}{\wurzel{2}}*\vektor{-1\\1} [/mm] raus.

Habe ich was falsch gemacht?
Könnt Ihr mal schauen, ob ich die Aufgabe richtig gelöst habe?

Die berechneten Eigenwerte lauten:
[mm] \lambda_{1} [/mm] = 1
[mm] \lambda_{2} [/mm] = -1

Nun berechne ich die Eigenvektoren.
Dazu nehme ich folgende Formel:
(A - [mm] E_{i})*x_{i} [/mm] = 0

Für [mm] \lambda_{1} [/mm] = 1:

[mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm] - [mm] \pmat{1&0\\0&1} [/mm] = [mm] \pmat{-1&1\\1&-1} [/mm]
Nun löse ich das LGS:
[mm] \pmat{-1&1\\1&-1} [/mm] //erste Zeile zu der zweiten addieren
[mm] \pmat{-1&1\\0&0} [/mm]

Nun wird es interessant, denn ich bekomme eine Nullzeile und kann eine Variable frei wählen. Welche nimmt man denn immer?
Habe mich für [mm] x_{2} [/mm] entschieden.

[mm] x_{2} [/mm] = [mm] \alpha [/mm]
In die erste Zeile eingesetzt:
[mm] x_{1} [/mm] = [mm] \alpha [/mm]

Demnach ist der Eigenvektor [mm] x_{1} [/mm] = [mm] \bruch{1}{\wurzel{2}}\vektor{1\\1} [/mm]

Für [mm] \lambda_{2} [/mm] = -1:

[mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm] + [mm] \pmat{1&0\\0&1} [/mm] = [mm] \pmat{1&1\\1&1} [/mm]
Nun löse ich das LGS:
[mm] \pmat{1&1\\1&1} [/mm] //erste Zeile negieren und zu der zweiten Zeile addieren
[mm] \pmat{1&1\\0&0} [/mm]


[mm] x_{2}=\alpha [/mm]
In die erste Zeile eingesetzt:
[mm] x_{1}= -\alpha [/mm]
Daraus folgt: [mm] x_{2} [/mm] = [mm] \bruch{1}{\wurzel{2}}*\vektor{-1\\1} [/mm]

Komme nicht ganz auf die richtige Lösung.


        
Bezug
Eigenvektoren berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Do 28.04.2011
Autor: MathePower

Hallo zoj,


> Gesucht sind die Eigenvektoren zu der Matrix:
>  A = [mm]\pmat{ 0 & 1 \\ 1 & 0 }[/mm]
>  Laut lösung soll für
> [mm]\lambda[/mm] = -1 der Eigenvektor [mm]x_{2}[/mm] =
> [mm]\bruch{1}{\wurzel{2}}*\vektor{1\\-1}[/mm] rauskommen
>  Ich bekomme aber den Vektor: [mm]x_{2}[/mm] =
> [mm]\bruch{1}{\wurzel{2}}*\vektor{-1\\1}[/mm] raus.
>  
> Habe ich was falsch gemacht?


Nein, Du hast nichts falsch gemacht.


>  Könnt Ihr mal schauen, ob ich die Aufgabe richtig gelöst
> habe?
>  
> Die berechneten Eigenwerte lauten:
>  [mm]\lambda_{1}[/mm] = 1
>  [mm]\lambda_{2}[/mm] = -1
>  
> Nun berechne ich die Eigenvektoren.
>  Dazu nehme ich folgende Formel:
>  (A - [mm]E_{i})*x_{i}[/mm] = 0
>  
> Für [mm]\lambda_{1}[/mm] = 1:
>  
> [mm]\pmat{ 0 & 1 \\ 1 & 0 }[/mm] - [mm]\pmat{1&0\\0&1}[/mm] =
> [mm]\pmat{-1&1\\1&-1}[/mm]
>  Nun löse ich das LGS:
>  [mm]\pmat{-1&1\\1&-1}[/mm] //erste Zeile zu der zweiten addieren
>  [mm]\pmat{-1&1\\0&0}[/mm]
>  
> Nun wird es interessant, denn ich bekomme eine Nullzeile
> und kann eine Variable frei wählen. Welche nimmt man denn
> immer?
>  Habe mich für [mm]x_{2}[/mm] entschieden.
>  
> [mm]x_{2}[/mm] = [mm]\alpha[/mm]
>  In die erste Zeile eingesetzt:
>  [mm]x_{1}[/mm] = [mm]\alpha[/mm]
>  
> Demnach ist der Eigenvektor [mm]x_{1}[/mm] =
> [mm]\bruch{1}{\wurzel{2}}\vektor{1\\1}[/mm]


[ok]


>
> Für [mm]\lambda_{2}[/mm] = -1:
>  
> [mm]\pmat{ 0 & 1 \\ 1 & 0 }[/mm] + [mm]\pmat{1&0\\0&1}[/mm] =
> [mm]\pmat{1&1\\1&1}[/mm]
>  Nun löse ich das LGS:
>  [mm]\pmat{1&1\\1&1}[/mm] //erste Zeile negieren und zu der zweiten
> Zeile addieren
>  [mm]\pmat{1&1\\0&0}[/mm]
>  
>
> [mm]x_{2}=\alpha[/mm]
>  In die erste Zeile eingesetzt:
>  [mm]x_{1}= -\alpha[/mm]
>  Daraus folgt: [mm]x_{2}[/mm] =
> [mm]\bruch{1}{\wurzel{2}}*\vektor{-1\\1}[/mm]
>  
> Komme nicht ganz auf die richtige Lösung.

>


Du musst nicht  unbedingt auf den in der Musterlösung
angegebenen Eigenvektor zu [mm]\lambda=-1[/mm] kommen.


Gruss
MathePower

Bezug
                
Bezug
Eigenvektoren berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Do 28.04.2011
Autor: zoj

>Du musst nicht  unbedingt auf den in der Musterlösung
>angegebenen Eigenvektor zu $ [mm] \lambda=-1 [/mm] $ kommen.

Warum nicht? Reicht es wenn man nur einen berechnet hat?


Bezug
                        
Bezug
Eigenvektoren berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Do 28.04.2011
Autor: MathePower

Hallo zoj,

> >Du musst nicht  unbedingt auf den in der Musterlösung
>  >angegebenen Eigenvektor zu [mm]\lambda=-1[/mm] kommen.
>
> Warum nicht? Reicht es wenn man nur einen berechnet hat?
>  


Wenn Du einen Eigenvektor zu einem Eigenwert berechnet hast reicht das.

Hier wurden noch zusätzlich die Eigenvektoren normiert.


Gruss
MathePower

Bezug
                                
Bezug
Eigenvektoren berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Do 28.04.2011
Autor: zoj

OK, danke für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]